The thermodynamic properties of diamond at high pressures (up to 1000 Cpa) have been investigated using the ab initio pseudopotential plane wave method and the density-functional perturbation theory. The P-V-T equation of states has been calculated from the Helmholtz flee energy of the crystal in the quasiharmonic approximation. The pressure dependence of the equilibrium lattice constant, bulk modulus, mode Gruneisen parameters, and phonon structures has been presented. Some interesting dynamical features of diamond have been found at high pressures: (a) The thermal expansion coefficient decreases with the increase of pressure. At ultrahigh pressure (greater than or equal to 700 GPa), diamond exhibits a negative thermal expansion coefficient at low temperatures. (b) The phonon frequency at X-4 and L-3' gradually goes higher than that of X-1 and L'(2), respectively. (c) The unusual overbending of the uppermost phonon dispersion curves near Gamma'(25) decreases with the increase of pressure. Such overbending results in a maximum in the phonon density of states, which has been invoked in the previous study [Phys. Rev. B 48, 3164 (1993)] to explain the famous sharp peak in the two-phonon Raman spectrum of diamond. Our present results predict that this sharp peak near the high-frequency cutoff will decrease with the pressure. [S0163-1829(99)03237-9].

High-pressure thermal expansion, bulk modulus, and phonon structure of diamond / Xie, J.; Chen, S. P.; Tse, J. S.; de Gironcoli, S.; Baroni, S.. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 60:13(1999), pp. 9444-9449. [10.1103/PhysRevB.60.9444]

High-pressure thermal expansion, bulk modulus, and phonon structure of diamond

de Gironcoli, S.;Baroni, S.
1999

Abstract

The thermodynamic properties of diamond at high pressures (up to 1000 Cpa) have been investigated using the ab initio pseudopotential plane wave method and the density-functional perturbation theory. The P-V-T equation of states has been calculated from the Helmholtz flee energy of the crystal in the quasiharmonic approximation. The pressure dependence of the equilibrium lattice constant, bulk modulus, mode Gruneisen parameters, and phonon structures has been presented. Some interesting dynamical features of diamond have been found at high pressures: (a) The thermal expansion coefficient decreases with the increase of pressure. At ultrahigh pressure (greater than or equal to 700 GPa), diamond exhibits a negative thermal expansion coefficient at low temperatures. (b) The phonon frequency at X-4 and L-3' gradually goes higher than that of X-1 and L'(2), respectively. (c) The unusual overbending of the uppermost phonon dispersion curves near Gamma'(25) decreases with the increase of pressure. Such overbending results in a maximum in the phonon density of states, which has been invoked in the previous study [Phys. Rev. B 48, 3164 (1993)] to explain the famous sharp peak in the two-phonon Raman spectrum of diamond. Our present results predict that this sharp peak near the high-frequency cutoff will decrease with the pressure. [S0163-1829(99)03237-9].
60
13
9444
9449
Xie, J.; Chen, S. P.; Tse, J. S.; de Gironcoli, S.; Baroni, S.
File in questo prodotto:
File Dimensione Formato  
PRB-60-9444-1999.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 123.52 kB
Formato Adobe PDF
123.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 75
social impact