It is shown that when q is a primitive root of unity of order not equal to 2 mod 4, A(SL_q(2)) is a free module of finite rank over the coordinate ring of the classical group SL(2). An explicit set of generators is provided.
A(SLq(2)) at roots of unity is a free module over A(SL(2)) / Dabrowski, Ludwik; Reina, Cesare; Zampa, A.. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 52:4(2000), pp. 339-342. [10.1023/A:1007601131002]
A(SLq(2)) at roots of unity is a free module over A(SL(2))
Dabrowski, Ludwik;Reina, Cesare;
2000-01-01
Abstract
It is shown that when q is a primitive root of unity of order not equal to 2 mod 4, A(SL_q(2)) is a free module of finite rank over the coordinate ring of the classical group SL(2). An explicit set of generators is provided.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A_1007601131002.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
70.21 kB
Formato
Adobe PDF
|
70.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.