We introduce the notion of parafermionic fields as the chiral fields which describe particle excitations in two-dimensional conformal field theory, and argue that the parafermionic conformal dimensions can be determined using scale invariant scattering theory. Together with operator product arguments this may provide new information, in particular for non-rational conformal theories. We obtain in this way the field theoretical derivation of the critical exponents of the random cluster and O(n) models, which in the limit of vanishing central charge yield percolation and self-avoiding walks. A simple derivation of the relation between S-matrix and Lagrangian couplings of sine-Gordon model is also given.

Parafermionic excitations and critical exponents of random cluster and O(n) models / Delfino, Gesualdo. - In: ANNALS OF PHYSICS. - ISSN 0003-4916. - 333:June(2013), pp. 1-11. [10.1016/j.aop.2013.02.009]

Parafermionic excitations and critical exponents of random cluster and O(n) models

Delfino, Gesualdo
2013-01-01

Abstract

We introduce the notion of parafermionic fields as the chiral fields which describe particle excitations in two-dimensional conformal field theory, and argue that the parafermionic conformal dimensions can be determined using scale invariant scattering theory. Together with operator product arguments this may provide new information, in particular for non-rational conformal theories. We obtain in this way the field theoretical derivation of the critical exponents of the random cluster and O(n) models, which in the limit of vanishing central charge yield percolation and self-avoiding walks. A simple derivation of the relation between S-matrix and Lagrangian couplings of sine-Gordon model is also given.
2013
333
June
1
11
https://arxiv.org/abs/1212.3178
Delfino, Gesualdo
File in questo prodotto:
File Dimensione Formato  
13_D_paraf.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 427.51 kB
Formato Adobe PDF
427.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact