We argue that the critical behavior near the point of "gradient catastrophe" of the solution to the Cauchy problem for the focusing nonlinear Schrodinger equation i epsilon Psi(t) + epsilon(2)/2 Psi(xx) + vertical bar Psi vertical bar(2)Psi = 0, epsilon << 1, with analytic initial data of the form Psi( x, 0; epsilon) = A(x)e(i/epsilon) (S(x)) is approximately described by a particular solution to the Painleve-I equation.

On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the Tritronquée solution to the Painlevé-I equation

Dubrovin, Boris;Grava, Tamara;
2009-01-01

Abstract

We argue that the critical behavior near the point of "gradient catastrophe" of the solution to the Cauchy problem for the focusing nonlinear Schrodinger equation i epsilon Psi(t) + epsilon(2)/2 Psi(xx) + vertical bar Psi vertical bar(2)Psi = 0, epsilon << 1, with analytic initial data of the form Psi( x, 0; epsilon) = A(x)e(i/epsilon) (S(x)) is approximately described by a particular solution to the Painleve-I equation.
2009
19
57
94
Dubrovin, Boris; Grava, Tamara; Klein, C.
File in questo prodotto:
File Dimensione Formato  
Dubrovin_Grava.pdf

accesso aperto

Descrizione: Open Access article
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 866.72 kB
Formato Adobe PDF
866.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 90
social impact