We argue that the critical behavior near the point of "gradient catastrophe" of the solution to the Cauchy problem for the focusing nonlinear Schrodinger equation i epsilon Psi(t) + epsilon(2)/2 Psi(xx) + vertical bar Psi vertical bar(2)Psi = 0, epsilon << 1, with analytic initial data of the form Psi( x, 0; epsilon) = A(x)e(i/epsilon) (S(x)) is approximately described by a particular solution to the Painleve-I equation.
On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the Tritronquée solution to the Painlevé-I equation
Dubrovin, Boris;Grava, Tamara;
2009-01-01
Abstract
We argue that the critical behavior near the point of "gradient catastrophe" of the solution to the Cauchy problem for the focusing nonlinear Schrodinger equation i epsilon Psi(t) + epsilon(2)/2 Psi(xx) + vertical bar Psi vertical bar(2)Psi = 0, epsilon << 1, with analytic initial data of the form Psi( x, 0; epsilon) = A(x)e(i/epsilon) (S(x)) is approximately described by a particular solution to the Painleve-I equation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Dubrovin_Grava.pdf
accesso aperto
Descrizione: Open Access article
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
866.72 kB
Formato
Adobe PDF
|
866.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.