The critical behavior of the three-dimensional N-vector chiral model is studied for arbitrary N. The known six-loop renormalization-group (RG) expansions are resummed using the Borel transformation combined with the conformal mapping and Pade approximant techniques. Analyzing the fixed-point location and the structure of RG flows, it is found that two marginal values of N exist which separate domains of continuous chiral phase transitions N>N-c1 and N<N-c2 from the region N-c1>N>N-c2 where such transitions are first order. Our calculations yield N-c1=6.4(4) and N-c2=5.7(3). For N>N-c1 the structure of RG flows is identical to that given by the epsilon and 1/N expansions with the chiral fixed point being a stable node. For N<N-c2 the chiral fixed point turns out to be a focus having no generic relation to the stable fixed point seen at small epsilon and large N. In this domain, containing the physical values N=2 and N=3, phase trajectories approach the fixed point in a spiral-like manner giving rise to unusual crossover regimes which may imitate varying (scattered) critical exponents seen in numerous physical and computer experiments.

Critical thermodynamics of a three-dimensional chiral model for N > 3

Calabrese, Pasquale;
2003-01-01

Abstract

The critical behavior of the three-dimensional N-vector chiral model is studied for arbitrary N. The known six-loop renormalization-group (RG) expansions are resummed using the Borel transformation combined with the conformal mapping and Pade approximant techniques. Analyzing the fixed-point location and the structure of RG flows, it is found that two marginal values of N exist which separate domains of continuous chiral phase transitions N>N-c1 and NN>N-c2 where such transitions are first order. Our calculations yield N-c1=6.4(4) and N-c2=5.7(3). For N>N-c1 the structure of RG flows is identical to that given by the epsilon and 1/N expansions with the chiral fixed point being a stable node. For N
2003
68
9
Calabrese, Pasquale; Parruccini, P; Sokolov, Ai
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 28
social impact