We show how some of the refined tropical counts of Block and Goettsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.

Block-Goettsche invariants from wall-crossing

Stoppa, Jacopo
2015-01-01

Abstract

We show how some of the refined tropical counts of Block and Goettsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.
2015
151
8
1543
1567
https://arxiv.org/abs/1212.4976
https://doi.org/10.1112/S0010437X14007994
Filippini, S. A.; Stoppa, Jacopo
File in questo prodotto:
File Dimensione Formato  
CM_PRINTED.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 605.89 kB
Formato Adobe PDF
605.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
FilippiniStoppa_Compositio.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 500.59 kB
Formato Adobe PDF
500.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact