We show how some of the refined tropical counts of Block and Goettsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.
Block-Goettsche invariants from wall-crossing
Stoppa, Jacopo
2015-01-01
Abstract
We show how some of the refined tropical counts of Block and Goettsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CM_PRINTED.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
605.89 kB
Formato
Adobe PDF
|
605.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
FilippiniStoppa_Compositio.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
500.59 kB
Formato
Adobe PDF
|
500.59 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.