In galaxy clusters the thermal Sunyaev-Zel'dovich (SZ) effect from the hot intracluster medium (ICM) provides a direct, self-contained measure of the pressure integrated over crossing lines of sight, that is intrinsically independent of redshift and well suited for evolutionary studies. We show in detail how the size of the effect and its pattern on the sky plane are directly related to the entropy levels in the ICM, and how they characterize the cluster cores and outskirts independently. We find that at redshifts z ≲ 0.3 the signals to be expected in the cores considerably exceed those detected at 10' resolution with the Planck satellite. We propose that at 1' resolutions as implemented on recent ground instrumentation for mapping features in individual clusters, the average patterns of the SZ signals can provide a direct and effective way to find and count cool, low-entropy cores and hot, high-entropy outskirts out to z ~ 2. Such counts will tell the timing and the mode of the processes that drive the evolution of the ICM from the distant to the local cluster population.
Probing the evolution of galaxy clusters with the SZ effect / Cavaliere, A.; Lapi, Andrea. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 571:Nov(2014), pp. 1-6. [10.1051/0004-6361/201424296]
Probing the evolution of galaxy clusters with the SZ effect
Lapi, Andrea
2014-01-01
Abstract
In galaxy clusters the thermal Sunyaev-Zel'dovich (SZ) effect from the hot intracluster medium (ICM) provides a direct, self-contained measure of the pressure integrated over crossing lines of sight, that is intrinsically independent of redshift and well suited for evolutionary studies. We show in detail how the size of the effect and its pattern on the sky plane are directly related to the entropy levels in the ICM, and how they characterize the cluster cores and outskirts independently. We find that at redshifts z ≲ 0.3 the signals to be expected in the cores considerably exceed those detected at 10' resolution with the Planck satellite. We propose that at 1' resolutions as implemented on recent ground instrumentation for mapping features in individual clusters, the average patterns of the SZ signals can provide a direct and effective way to find and count cool, low-entropy cores and hot, high-entropy outskirts out to z ~ 2. Such counts will tell the timing and the mode of the processes that drive the evolution of the ICM from the distant to the local cluster population.File | Dimensione | Formato | |
---|---|---|---|
Cavaliere14.pdf
accesso aperto
Descrizione: Open Access Journal
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
566.71 kB
Formato
Adobe PDF
|
566.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.