Violations of Lorentz (and specifically boost) invariance can make gravity renormalizable in the ultraviolet, as initially noted by Horava, but are increasingly constrained in the infrared. At low energies, ˇ Horava gravity is characterized by three dimensionless couplings, ˇ α, β and λ, which vanish in the general relativistic limit. Solar system and gravitational wave experiments bound two of these couplings (α and β) to tiny values, but the third remains relatively unconstrained (0 ≤ λ ≲ 0.01–0.1). Moreover, demanding that (slowly moving) black-hole solutions are regular away from the central singularity requires α and β to vanish exactly. Although a canonical constraint analysis shows that the class of khronometric theories resulting from these constraints (α ¼ β ¼ 0 and λ ≠ 0) cannot be equivalent to General Relativity, even in vacuum, previous calculations of the dynamics of the solar system, binary pulsars and gravitational-wave generation show perfect agreement with general relativity. Here, we analyze spherical collapse and compute black-hole quasinormal modes, and find again that they behave exactly as in general relativity, as far as observational predictions are concerned. Nevertheless, we find that spherical collapse leads to the formation of a regular universal horizon, i.e., a causal boundary for signals of arbitrary propagation speeds, inside the usual event horizon for matter and tensor gravitons. Our analysis also confirms that the additional scalar degree of freedom present alongside the spin-2 graviton of general relativity remains strongly coupled at low energies, even on curved backgrounds. These puzzling results suggest that any further bounds on Horava gravity will probably come from ˇ cosmology.
Relation between general relativity and a class of Hořava gravity theories / Franchini, Nicola; Herrero-Valea, Mario; Barausse, Enrico. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 103:8(2021), pp. 1-15. [10.1103/PhysRevD.103.084012]
Relation between general relativity and a class of Hořava gravity theories
Franchini, Nicola;Herrero-Valea, Mario;Barausse, Enrico
2021-01-01
Abstract
Violations of Lorentz (and specifically boost) invariance can make gravity renormalizable in the ultraviolet, as initially noted by Horava, but are increasingly constrained in the infrared. At low energies, ˇ Horava gravity is characterized by three dimensionless couplings, ˇ α, β and λ, which vanish in the general relativistic limit. Solar system and gravitational wave experiments bound two of these couplings (α and β) to tiny values, but the third remains relatively unconstrained (0 ≤ λ ≲ 0.01–0.1). Moreover, demanding that (slowly moving) black-hole solutions are regular away from the central singularity requires α and β to vanish exactly. Although a canonical constraint analysis shows that the class of khronometric theories resulting from these constraints (α ¼ β ¼ 0 and λ ≠ 0) cannot be equivalent to General Relativity, even in vacuum, previous calculations of the dynamics of the solar system, binary pulsars and gravitational-wave generation show perfect agreement with general relativity. Here, we analyze spherical collapse and compute black-hole quasinormal modes, and find again that they behave exactly as in general relativity, as far as observational predictions are concerned. Nevertheless, we find that spherical collapse leads to the formation of a regular universal horizon, i.e., a causal boundary for signals of arbitrary propagation speeds, inside the usual event horizon for matter and tensor gravitons. Our analysis also confirms that the additional scalar degree of freedom present alongside the spin-2 graviton of general relativity remains strongly coupled at low energies, even on curved backgrounds. These puzzling results suggest that any further bounds on Horava gravity will probably come from ˇ cosmology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.