Psychiatric disorders are ubiquitously characterized by debilitating social impairments. These difficulties are thought to emerge from aberrant social inference. In order to elucidate the underlying computational mechanisms, patients diagnosed with major depressive disorder (N = 29), schizophrenia (N = 31), and borderline personality disorder (N = 31) as well as healthy controls (N = 34) performed a probabilistic reward learning task in which participants could learn from social and nonsocial information. Patients with schizophrenia and borderline personality disorder performed more poorly on the task than healthy controls and patients with major depressive disorder. Broken down by domain, borderline personality disorder patients performed better in the social compared to the non-social domain. In contrast, controls and MDD patients showed the opposite pattern and SCZ patients showed no difference between domains. In effect, borderline personality disorder patients gave up a possible overall performance advantage by concentrating their learning in the social at the expense of the non-social domain. We used computational modeling to assess learning and decision-making parameters estimated for each participant from their behavior. This enabled additional insights into the underlying learning and decision-making mechanisms. Patients with borderline personality disorder showed slower learning from social and non-social information and an exaggerated sensitivity to changes in environmental volatility, both in the non-social and the social domain, but more so in the latter. Regarding decision-making the modeling revealed that compared to controls and major depression patients, patients with borderline personality disorder and schizophrenia showed a stronger reliance on social relative to non-social information when making choices. Depressed patients did not differ significantly from controls in this respect. Overall, our results are consistent with the notion of a general interpersonal hypersensitivity in borderline personality disorder and schizophrenia based on a shared computational mechanism characterized by an over-reliance on beliefs about others in making decisions and by an exaggerated need to make sense of others during learning specifically in borderline personality disorder.

Aberrant computational mechanisms of social learning and decision-making in schizophrenia and borderline personality disorder / Henco, L.; Diaconescu, A. O.; Lahnakoski, J. M.; Brandi, M. -L.; Hormann, S.; Hennings, J.; Hasan, A.; Papazova, I.; Strube, W.; Bolis, D.; Schilbach, L.; Mathys, C.. - In: PLOS COMPUTATIONAL BIOLOGY. - ISSN 1553-734X. - 16:9(2020), pp. 1-22. [10.1371/journal.pcbi.1008162]

Aberrant computational mechanisms of social learning and decision-making in schizophrenia and borderline personality disorder

Mathys C.
2020-01-01

Abstract

Psychiatric disorders are ubiquitously characterized by debilitating social impairments. These difficulties are thought to emerge from aberrant social inference. In order to elucidate the underlying computational mechanisms, patients diagnosed with major depressive disorder (N = 29), schizophrenia (N = 31), and borderline personality disorder (N = 31) as well as healthy controls (N = 34) performed a probabilistic reward learning task in which participants could learn from social and nonsocial information. Patients with schizophrenia and borderline personality disorder performed more poorly on the task than healthy controls and patients with major depressive disorder. Broken down by domain, borderline personality disorder patients performed better in the social compared to the non-social domain. In contrast, controls and MDD patients showed the opposite pattern and SCZ patients showed no difference between domains. In effect, borderline personality disorder patients gave up a possible overall performance advantage by concentrating their learning in the social at the expense of the non-social domain. We used computational modeling to assess learning and decision-making parameters estimated for each participant from their behavior. This enabled additional insights into the underlying learning and decision-making mechanisms. Patients with borderline personality disorder showed slower learning from social and non-social information and an exaggerated sensitivity to changes in environmental volatility, both in the non-social and the social domain, but more so in the latter. Regarding decision-making the modeling revealed that compared to controls and major depression patients, patients with borderline personality disorder and schizophrenia showed a stronger reliance on social relative to non-social information when making choices. Depressed patients did not differ significantly from controls in this respect. Overall, our results are consistent with the notion of a general interpersonal hypersensitivity in borderline personality disorder and schizophrenia based on a shared computational mechanism characterized by an over-reliance on beliefs about others in making decisions and by an exaggerated need to make sense of others during learning specifically in borderline personality disorder.
2020
16
9
1
22
e1008162
Henco, L.; Diaconescu, A. O.; Lahnakoski, J. M.; Brandi, M. -L.; Hormann, S.; Hennings, J.; Hasan, A.; Papazova, I.; Strube, W.; Bolis, D.; Schilbach,...espandi
File in questo prodotto:
File Dimensione Formato  
pcbi.1008162.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/122691
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 31
social impact