We study Hamiltonian systems which generate extremal flows of regular variational problems on smooth manifolds and demonstrate that negativity of the generalized curvature of such a system implies the existence of a global smooth optimal synthesis for the infinite horizon problem. We also show that in the Euclidean case negativity of the generalized curvature is a consequence of the convexity of the Lagrangian with respect to the pair of arguments. Finally, we give a generic classification for 1-dimensional problems.

Smooth optimal synthesis for infinite horizon variational problems / Agrachev, A.; Chittaro, F.. - In: ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS. - ISSN 1262-3377. - 15:1(2009), pp. 173-188. [10.1051/cocv:2008029]

Smooth optimal synthesis for infinite horizon variational problems

Agrachev, A.;
2009-01-01

Abstract

We study Hamiltonian systems which generate extremal flows of regular variational problems on smooth manifolds and demonstrate that negativity of the generalized curvature of such a system implies the existence of a global smooth optimal synthesis for the infinite horizon problem. We also show that in the Euclidean case negativity of the generalized curvature is a consequence of the convexity of the Lagrangian with respect to the pair of arguments. Finally, we give a generic classification for 1-dimensional problems.
2009
15
1
173
188
https://doi.org/10.1051/cocv:2008029
Agrachev, A.; Chittaro, F.
File in questo prodotto:
File Dimensione Formato  
infinite.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 318.91 kB
Formato Adobe PDF
318.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact