In this paper, we study basic differential invariants of the pair (vector field, foliation). As a result, we establish a dynamic interpretation and a generalization of the Levi-Civita connection and Riemannian curvature treated as invariants of the geodesic flow on the tangent bundle.

Vector fields on n-foliated 2n-dimensional manifolds / Agrachev, A.; Gamkrelidze, R.. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - 135:4(2006), pp. 3093-3108. [10.1007/s10958-006-0147-1]

Vector fields on n-foliated 2n-dimensional manifolds

Agrachev, A.;
2006-01-01

Abstract

In this paper, we study basic differential invariants of the pair (vector field, foliation). As a result, we establish a dynamic interpretation and a generalization of the Levi-Civita connection and Riemannian curvature treated as invariants of the geodesic flow on the tangent bundle.
2006
135
4
3093
3108
Agrachev, A.; Gamkrelidze, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12364
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact