In this paper, we study basic differential invariants of the pair (vector field, foliation). As a result, we establish a dynamic interpretation and a generalization of the Levi-Civita connection and Riemannian curvature treated as invariants of the geodesic flow on the tangent bundle.
Vector fields on n-foliated 2n-dimensional manifolds / Agrachev, A.; Gamkrelidze, R.. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - 135:4(2006), pp. 3093-3108. [10.1007/s10958-006-0147-1]
Vector fields on n-foliated 2n-dimensional manifolds
Agrachev, A.;
2006-01-01
Abstract
In this paper, we study basic differential invariants of the pair (vector field, foliation). As a result, we establish a dynamic interpretation and a generalization of the Levi-Civita connection and Riemannian curvature treated as invariants of the geodesic flow on the tangent bundle.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.