FeSexTe1−x compounds display a rich phase diagram, ranging from the nematicity of FeSe to the (π,π) magnetism of FeTe. We focus on FeSe0.4Te0.6, and exploit tr-ARPES to study its ultrafast electron dynamics following photoexcitation by near-infrared pump pulses. By exploiting probe-polarization-dependent matrix element effects, we reveal a photoinduced long-lived state, lasting for a few tens of picoseconds, showing features compatible with a nematic state. The possibility to induce a long-lived state in this compound by using ultra-short pulses might shed a new light on the driving force behind the nematic symmetry breaking in iron-based superconductors. With the aid of a phenomenological model, we illustrate how our results possibly question the common belief that a low-energy coupling with fluctuations is a necessary condition to stabilize the nematic order. On the contrary, the tendency towards orbital differentiation due to strong electronic correlations induced by the Hund's coupling could be at the origin of the nematic order in iron-based superconductors.
Photoinduced long-lived state in FeSe0.4Te0.6 / Fanfarillo, L.; Kopic, D.; Sterzi, A.; Manzoni, G.; Crepaldi, A.; Payne, D. T.; Bronsch, W.; Tsurkan, V.; Croitori, D.; Deisenhofer, J.; Parmigiani, F.; Capone, M.; Cilento, F.. - In: JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA. - ISSN 0368-2048. - 250:(2021), pp. 1-6. [10.1016/j.elspec.2021.147090]
Photoinduced long-lived state in FeSe0.4Te0.6
Fanfarillo L.
Membro del Collaboration group
;Capone M.;
2021-01-01
Abstract
FeSexTe1−x compounds display a rich phase diagram, ranging from the nematicity of FeSe to the (π,π) magnetism of FeTe. We focus on FeSe0.4Te0.6, and exploit tr-ARPES to study its ultrafast electron dynamics following photoexcitation by near-infrared pump pulses. By exploiting probe-polarization-dependent matrix element effects, we reveal a photoinduced long-lived state, lasting for a few tens of picoseconds, showing features compatible with a nematic state. The possibility to induce a long-lived state in this compound by using ultra-short pulses might shed a new light on the driving force behind the nematic symmetry breaking in iron-based superconductors. With the aid of a phenomenological model, we illustrate how our results possibly question the common belief that a low-energy coupling with fluctuations is a necessary condition to stabilize the nematic order. On the contrary, the tendency towards orbital differentiation due to strong electronic correlations induced by the Hund's coupling could be at the origin of the nematic order in iron-based superconductors.File | Dimensione | Formato | |
---|---|---|---|
Fanfarillo_JESRP_2021.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.