We consider a class of non convex scalar functionals of the form F(u) = ∫Ω f(x,u,Du)dx, under standard assumptions of regularity of the solutions of the associated relaxed problem and of local affinity of the bipolar f ** of f on the set {f ** < f}. We provide an existence theorem, which extends known results to lagrangians depending explicitly on the three variables, by the introduction of integro-extremal minimizers of the relaxed functional which solve the equation f** (x, u,Du) - f(x, u,Du) =0, or the opposite one, almost everywhere and in viscosity sense. © 2007 Springer-Verlag.

Minimizers of non convex scalar functionals and viscosity solutions of Hamilton-Jacobi equations / Zagatti, Sandro. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 31:4(2008), pp. 511-519. [10.1007/s00526-007-0124-7]

Minimizers of non convex scalar functionals and viscosity solutions of Hamilton-Jacobi equations

Zagatti, Sandro
2008-01-01

Abstract

We consider a class of non convex scalar functionals of the form F(u) = ∫Ω f(x,u,Du)dx, under standard assumptions of regularity of the solutions of the associated relaxed problem and of local affinity of the bipolar f ** of f on the set {f ** < f}. We provide an existence theorem, which extends known results to lagrangians depending explicitly on the three variables, by the introduction of integro-extremal minimizers of the relaxed functional which solve the equation f** (x, u,Du) - f(x, u,Du) =0, or the opposite one, almost everywhere and in viscosity sense. © 2007 Springer-Verlag.
2008
31
4
511
519
https://doi.org/10.1007/s00526-007-0124-7
Zagatti, Sandro
File in questo prodotto:
File Dimensione Formato  
calcvar1.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 171.43 kB
Formato Adobe PDF
171.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact