Graphene unique physicochemical properties made it prominent among other allotropic forms of carbon, in many areas of research and technological applications. Interestingly, in recent years, many studies exploited the use of graphene family nanomaterials (GNMs) for biomedical applications such as drug delivery, diagnostics, bioimaging, and tissue engineering research. GNMs are successfully used for the design of scaffolds for controlled induction of cell differentiation and tissue regeneration. Critically, it is important to identify the more appropriate nano/bio material interface sustaining cells differentiation and tissue regeneration enhancement. Specifically, this review is focussed on graphene-based scaffolds that endow physiochemical and biological properties suitable for a specific tissue, the nervous system, that links tightly morphological and electrical properties. Different strategies are reviewed to exploit GNMs for neuronal engineering and regeneration, material toxicity, and biocompatibility. Specifically, the potentiality for neuronal stem cells differentiation and subsequent neuronal network growth as well as the impact of electrical stimulation through GNM on cells is presented. The use of field effect transistor (FET) based on graphene for neuronal regeneration is described. This review concludes the important aspects to be controlled to make graphene a promising candidate for further advanced application in neuronal tissue engineering and biomedical use.

Graphene-Based Nanomaterials for Neuroengineering: Recent Advances and Future Prospective / Kumar, R.; Rauti, R.; Scaini, D.; Antman-Passig, M.; Meshulam, O.; Naveh, D.; Ballerini, L.; Shefi, O.. - In: ADVANCED FUNCTIONAL MATERIALS. - ISSN 1616-301X. - (2021), pp. 1-22. [10.1002/adfm.202104887]

Graphene-Based Nanomaterials for Neuroengineering: Recent Advances and Future Prospective

Rauti R.;Scaini D.;Ballerini L.;
2021-01-01

Abstract

Graphene unique physicochemical properties made it prominent among other allotropic forms of carbon, in many areas of research and technological applications. Interestingly, in recent years, many studies exploited the use of graphene family nanomaterials (GNMs) for biomedical applications such as drug delivery, diagnostics, bioimaging, and tissue engineering research. GNMs are successfully used for the design of scaffolds for controlled induction of cell differentiation and tissue regeneration. Critically, it is important to identify the more appropriate nano/bio material interface sustaining cells differentiation and tissue regeneration enhancement. Specifically, this review is focussed on graphene-based scaffolds that endow physiochemical and biological properties suitable for a specific tissue, the nervous system, that links tightly morphological and electrical properties. Different strategies are reviewed to exploit GNMs for neuronal engineering and regeneration, material toxicity, and biocompatibility. Specifically, the potentiality for neuronal stem cells differentiation and subsequent neuronal network growth as well as the impact of electrical stimulation through GNM on cells is presented. The use of field effect transistor (FET) based on graphene for neuronal regeneration is described. This review concludes the important aspects to be controlled to make graphene a promising candidate for further advanced application in neuronal tissue engineering and biomedical use.
2021
1
22
2104887
10.1002/adfm.202104887
Kumar, R.; Rauti, R.; Scaini, D.; Antman-Passig, M.; Meshulam, O.; Naveh, D.; Ballerini, L.; Shefi, O.
File in questo prodotto:
File Dimensione Formato  
preprint Graphene.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 9.34 MB
Formato Adobe PDF
9.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/124377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact