We investigate signatures of a self-trapping transition in the driven-dissipative Bose Hubbard dimer, in presence of incoherent pump and single-particle losses. For fully symmetric couplings the stationary state density matrix is independent of any Hamiltonian parameter, and cannot therefore capture the competition between hopping-induced delocalization and the interaction-dominated self-trapping regime. We focus instead on the exact quantum dynamics of the particle imbalance after the system is prepared in a variety of initial states, and on the frequency-resolved spectral properties of the steady state, as encoded in the single-particle Green's functions. We find clear signatures of a localization-delocalization crossover as a function of hopping to interaction ratio. We further show that a finite a pump-loss asymmetry restores a delocalization crossover in the steady-state imbalance and leads to a finite intra-dimer dissipation.
Signatures of self-trapping in the driven-dissipative Bose-Hubbard dimer / Seclì, Matteo; Capone, Massimo; Schirò, Marco. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - 23:(2021), pp. 1-20. [10.1088/1367-2630/ac04c8]
Signatures of self-trapping in the driven-dissipative Bose-Hubbard dimer
Seclì, Matteo
;Capone, Massimo;Schirò, Marco
2021-01-01
Abstract
We investigate signatures of a self-trapping transition in the driven-dissipative Bose Hubbard dimer, in presence of incoherent pump and single-particle losses. For fully symmetric couplings the stationary state density matrix is independent of any Hamiltonian parameter, and cannot therefore capture the competition between hopping-induced delocalization and the interaction-dominated self-trapping regime. We focus instead on the exact quantum dynamics of the particle imbalance after the system is prepared in a variety of initial states, and on the frequency-resolved spectral properties of the steady state, as encoded in the single-particle Green's functions. We find clear signatures of a localization-delocalization crossover as a function of hopping to interaction ratio. We further show that a finite a pump-loss asymmetry restores a delocalization crossover in the steady-state imbalance and leads to a finite intra-dimer dissipation.File | Dimensione | Formato | |
---|---|---|---|
Seclì_2021_New_J._Phys._23_063056.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.98 MB
Formato
Adobe PDF
|
2.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.