We consider a Pfaffian system expressing isomonodromy of an irregular system of Okubo type, depending on complex deformation parameters u= (u1, … , un) , which are eigenvalues of the leading matrix at the irregular singularity. At the same time, we consider a Pfaffian system of non-normalized Schlesinger-type expressing isomonodromy of a Fuchsian system, whose poles are the deformation parameters u1, … , un. The parameters vary in a polydisc containing a coalescence locus for the eigenvalues of the leading matrix of the irregular system, corresponding to confluence of the Fuchsian singularities. We construct isomonodromic selected and singular vector solutions of the Fuchsian Pfaffian system together with their isomonodromic connection coefficients, so extending a result of Balser et al. (I SIAM J Math Anal 12(5): 691–721, 1981) and Guzzetti (Funkcial Ekvac 59(3): 383–433, 2016) to the isomonodromic case, including confluence of singularities. Then, we introduce an isomonodromic Laplace transform of the selected and singular vector solutions, allowing to obtain isomonodromic fundamental solutions for the irregular system, and their Stokes matrices expressed in terms of connection coefficients. These facts, in addition to extending (Balser et al. in I SIAM J Math Anal 12(5): 691–721, 1981; Guzzetti in Funkcial Ekvac 59(3): 383–433, 2016) to the isomonodromic case (with coalescences/confluences), allow to prove by means of Laplace transform the main result of Cotti et al. (Duke Math J arXiv:1706.04808, 2017), namely the analytic theory of non-generic isomonodromic deformations of the irregular system with coalescing eigenvalues.

Isomonodromic Laplace transform with coalescing eigenvalues and confluence of Fuchsian singularities / Guzzetti, D.. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 111:3(2021), pp. 1-70. [10.1007/s11005-021-01423-z]

Isomonodromic Laplace transform with coalescing eigenvalues and confluence of Fuchsian singularities

Guzzetti D.
2021-01-01

Abstract

We consider a Pfaffian system expressing isomonodromy of an irregular system of Okubo type, depending on complex deformation parameters u= (u1, … , un) , which are eigenvalues of the leading matrix at the irregular singularity. At the same time, we consider a Pfaffian system of non-normalized Schlesinger-type expressing isomonodromy of a Fuchsian system, whose poles are the deformation parameters u1, … , un. The parameters vary in a polydisc containing a coalescence locus for the eigenvalues of the leading matrix of the irregular system, corresponding to confluence of the Fuchsian singularities. We construct isomonodromic selected and singular vector solutions of the Fuchsian Pfaffian system together with their isomonodromic connection coefficients, so extending a result of Balser et al. (I SIAM J Math Anal 12(5): 691–721, 1981) and Guzzetti (Funkcial Ekvac 59(3): 383–433, 2016) to the isomonodromic case, including confluence of singularities. Then, we introduce an isomonodromic Laplace transform of the selected and singular vector solutions, allowing to obtain isomonodromic fundamental solutions for the irregular system, and their Stokes matrices expressed in terms of connection coefficients. These facts, in addition to extending (Balser et al. in I SIAM J Math Anal 12(5): 691–721, 1981; Guzzetti in Funkcial Ekvac 59(3): 383–433, 2016) to the isomonodromic case (with coalescences/confluences), allow to prove by means of Laplace transform the main result of Cotti et al. (Duke Math J arXiv:1706.04808, 2017), namely the analytic theory of non-generic isomonodromic deformations of the irregular system with coalescing eigenvalues.
2021
111
3
1
70
80
10.1007/s11005-021-01423-z
https://arxiv.org/abs/2101.03397
Guzzetti, D.
File in questo prodotto:
File Dimensione Formato  
PUBLISHED-LMP.pdf

non disponibili

Descrizione: Articolo principale ed unico
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Revised-Version.pdf

accesso aperto

Descrizione: Articolo principale in preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/124869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact