We propose a space-based interferometer surveying the gravitational wave (GW) sky in the milli-Hz to mu-Hz frequency range. By the 2040s, the mu-Hz frequency band, bracketed in between the Laser Interferometer Space Antenna (LISA) and pulsar timing arrays, will constitute the largest gap in the coverage of the astrophysically relevant GW spectrum. Yet many outstanding questions related to astrophysics and cosmology are best answered by GW observations in this band. We show that a mu-Hz GW detector will be a truly overarching observatory for the scientific community at large, greatly extending the potential of LISA. Conceived to detect massive black hole binaries from their early inspiral with high signal-to-noise ratio, and low-frequency stellar binaries in the Galaxy, this instrument will be a cornerstone for multimessenger astronomy from the solar neighbourhood to the high-redshift Universe.

Unveiling the gravitational universe at μ-Hz frequencies / Sesana, Alberto; Korsakova, Natalia; Sedda, Manuel Arca; Baibhav, Vishal; Barausse, Enrico; Barke, Simon; Berti, Emanuele; Bonetti, Matteo; Capelo, Pedro R.; Caprini, Chiara; Garcia-Bellido, Juan; Haiman, Zoltan; Jani, Karan; Jennrich, Oliver; Johansson, Peter H.; Khan, Fazeel Mahmood; Korol, Valeriya; Lamberts, Astrid; Lupi, Alessandro; Mangiagli, Alberto; Mayer, Lucio; Nardini, Germano; Pacucci, Fabio; Petiteau, Antoine; Raccanelli, Alvise; Rajendran, Surjeet; Regan, John; Shao, Lijing; Spallicci, Alessandro; Tamanini, Nicola; Volonteri, Marta; Warburton, Niels; Wong, Kaze; Zumalacarregui, Miguel. - In: EXPERIMENTAL ASTRONOMY. - ISSN 0922-6435. - (2021). [10.1007/s10686-021-09709-9]

Unveiling the gravitational universe at μ-Hz frequencies

Barausse, Enrico;
2021-01-01

Abstract

We propose a space-based interferometer surveying the gravitational wave (GW) sky in the milli-Hz to mu-Hz frequency range. By the 2040s, the mu-Hz frequency band, bracketed in between the Laser Interferometer Space Antenna (LISA) and pulsar timing arrays, will constitute the largest gap in the coverage of the astrophysically relevant GW spectrum. Yet many outstanding questions related to astrophysics and cosmology are best answered by GW observations in this band. We show that a mu-Hz GW detector will be a truly overarching observatory for the scientific community at large, greatly extending the potential of LISA. Conceived to detect massive black hole binaries from their early inspiral with high signal-to-noise ratio, and low-frequency stellar binaries in the Galaxy, this instrument will be a cornerstone for multimessenger astronomy from the solar neighbourhood to the high-redshift Universe.
2021
10.1007/s10686-021-09709-9
https://arxiv.org/abs/1908.11391
Sesana, Alberto; Korsakova, Natalia; Sedda, Manuel Arca; Baibhav, Vishal; Barausse, Enrico; Barke, Simon; Berti, Emanuele; Bonetti, Matteo; Capelo, Pe...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/124904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 159
  • ???jsp.display-item.citation.isi??? 137
social impact