We summarize our modelling of galaxy photometric evolution (the GRASIL code). By including the effects of dust grains and PAH molecules in a two-phase clumpy medium, where clumps are associated with star-forming regions, we reproduce the observed UV to radio SEDs of galaxies with star formation rates from zero to several hundred M. yr(-1). GRASIL is a powerful tool for investigating star formation, the initial mass function and the supernova rate in nearby starbursts and normal galaxies, as well as for predicting the evolution of luminosity functions of different types of galaxies at wavelengths covering six decades. It may be interfaced with any device to provide the star formation and metallicity histories of a galaxy. As an application, we have investigated the properties of early-type galaxies in the HDF, tracking the contribution of this population to the cosmic star formation history, which has a broad peak between z = 1.5 and 4. To explain the absence of objects at z greater than or similar to 1.3, we suggest a sequence of dust-enshrouded merger-driven starbursts in the first few Gyr of galaxy lifetimes. We are at present working on a complementary sample of late-type objects selected in a similar way.

New photometric models of galactic evolution applied to the HDF / Granato, G. L.; Silva, L.; Danese, L.; Rodighiero, G.; Franceschini, A.; Fasano, G.; Bressan, A.. - In: ASTROPHYSICS AND SPACE SCIENCE. - ISSN 0004-640X. - 276:2-4(2001), pp. 973-978. [10.1023/A:1017559811928]

New photometric models of galactic evolution applied to the HDF

Danese, L.;Bressan, A.
2001-01-01

Abstract

We summarize our modelling of galaxy photometric evolution (the GRASIL code). By including the effects of dust grains and PAH molecules in a two-phase clumpy medium, where clumps are associated with star-forming regions, we reproduce the observed UV to radio SEDs of galaxies with star formation rates from zero to several hundred M. yr(-1). GRASIL is a powerful tool for investigating star formation, the initial mass function and the supernova rate in nearby starbursts and normal galaxies, as well as for predicting the evolution of luminosity functions of different types of galaxies at wavelengths covering six decades. It may be interfaced with any device to provide the star formation and metallicity histories of a galaxy. As an application, we have investigated the properties of early-type galaxies in the HDF, tracking the contribution of this population to the cosmic star formation history, which has a broad peak between z = 1.5 and 4. To explain the absence of objects at z greater than or similar to 1.3, we suggest a sequence of dust-enshrouded merger-driven starbursts in the first few Gyr of galaxy lifetimes. We are at present working on a complementary sample of late-type objects selected in a similar way.
2001
276
2-4
973
978
https://arxiv.org/abs/astro-ph/9903349
Granato, G. L.; Silva, L.; Danese, L.; Rodighiero, G.; Franceschini, A.; Fasano, G.; Bressan, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact