In this study we present a simple model of elliptical galaxies aimed at interpreting the gradients in colours and narrow band indices observed across these systems. Salient features of the model are the gradients in mass density and star formation and infall of primordial gas aimed at simulating the collapse of a galaxy into the potential well of dark matter. Adopting a multi-zone model we follow in detail the history of star formation, gas consumption, and chemical enrichment of the galaxy and also allow for the occurrence of galactic winds according to the classical supernova (and stellar winds) energy deposit. The outline of the model, the time scale of gas accretion and rate of star formation as a function of the galacto-centric distance in particular, seek to closely mimic the results from Tree-SPH dynamical models. Although some specific ingredients of the model can be questioned from many points of view (of which we are well aware), the model has to be considered as a gross tool for exploring the consequences of different recipes of gas accretion and star formation in which the simple one-zone scheme is abandoned. With the aid of this model we discuss the observational data on the gradients in metallicity, colours, and narrow band indices across elliptical galaxies.

Spectro-photometric evolution of elliptical galaxies. III. Infall models with gradients in mass density and star formation / Tantalo, R.; Chiosi, C.; Bressan, A.; Marigo, P.; Portinari, L.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 335:3(1998), pp. 823-846.

Spectro-photometric evolution of elliptical galaxies. III. Infall models with gradients in mass density and star formation

Bressan, A.;
1998-01-01

Abstract

In this study we present a simple model of elliptical galaxies aimed at interpreting the gradients in colours and narrow band indices observed across these systems. Salient features of the model are the gradients in mass density and star formation and infall of primordial gas aimed at simulating the collapse of a galaxy into the potential well of dark matter. Adopting a multi-zone model we follow in detail the history of star formation, gas consumption, and chemical enrichment of the galaxy and also allow for the occurrence of galactic winds according to the classical supernova (and stellar winds) energy deposit. The outline of the model, the time scale of gas accretion and rate of star formation as a function of the galacto-centric distance in particular, seek to closely mimic the results from Tree-SPH dynamical models. Although some specific ingredients of the model can be questioned from many points of view (of which we are well aware), the model has to be considered as a gross tool for exploring the consequences of different recipes of gas accretion and star formation in which the simple one-zone scheme is abandoned. With the aid of this model we discuss the observational data on the gradients in metallicity, colours, and narrow band indices across elliptical galaxies.
1998
335
3
823
846
Tantalo, R.; Chiosi, C.; Bressan, A.; Marigo, P.; Portinari, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 47
social impact