In this paper we present a compact review on the mostly used techniques for computational reduction in numerical approximation of partial differential equations. We highlight the common features of these techniques and provide a detailed presentation of the reduced basis method, focusing on greedy algorithms for the construction of the reduced spaces. An alternative family of reduction techniques based on surrogate response surface models is briefly recalled too. Then, a simple example dealing with inviscid flows is presented, showing the reliability of the reduced basis method and a comparison between this technique and some surrogate models. © 2012 Springer Basel AG.
Computational reduction for parametrized PDEs: strategies and applications
Manzoni, Andrea;Rozza, Gianluigi
2012-01-01
Abstract
In this paper we present a compact review on the mostly used techniques for computational reduction in numerical approximation of partial differential equations. We highlight the common features of these techniques and provide a detailed presentation of the reduced basis method, focusing on greedy algorithms for the construction of the reduced spaces. An alternative family of reduction techniques based on surrogate response surface models is briefly recalled too. Then, a simple example dealing with inviscid flows is presented, showing the reliability of the reduced basis method and a comparison between this technique and some surrogate models. © 2012 Springer Basel AG.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.