In the small dispersion limit, solutions to the Korteweg-de Vries equation develop an interval of fast oscillations after a certain time. We obtain a universal asymptotic expansion for the Korteweg-de Vries solution near the leading edge of the oscillatory zone up to second order corrections. This expansion involves the Hastings-McLeod solution of the Painlev\'e II equation. We prove our results using the Riemann-Hilbert approach.

Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg - de Vries equation in the small-dispersion limit

Grava, Tamara
2010-01-01

Abstract

In the small dispersion limit, solutions to the Korteweg-de Vries equation develop an interval of fast oscillations after a certain time. We obtain a universal asymptotic expansion for the Korteweg-de Vries solution near the leading edge of the oscillatory zone up to second order corrections. This expansion involves the Hastings-McLeod solution of the Painlev\'e II equation. We prove our results using the Riemann-Hilbert approach.
2010
63
2
203
232
https://arxiv.org/abs/0812.4142
Claeys, T.; Grava, Tamara
File in questo prodotto:
File Dimensione Formato  
ClaeysGrava2010.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 261.26 kB
Formato Adobe PDF
261.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact