For a quasi-smooth hypersurface X in a projective simplicial toric variety PΣ, the morphism i∗: Hp(PΣ) → Hp(X) induced by the inclusion is injective for p= dim X and an isomorphism for p< dim X- 1. This allows one to define the Noether–Lefschetz locus NL β as the locus of quasi-smooth hypersurfaces of degree β such that i∗ acting on the middle algebraic cohomology is not an isomorphism. We prove that, under some assumptions, if dim PΣ= 2 k+ 1 and kβ- β= nη, n∈ N, where η is the class of a 0-regular ample divisor, and β is the anticanonical class, every irreducible component V of the Noether–Lefschetz locus quasi-smooth hypersurfaces of degree β satisfies the bounds n+1⩽codimZ⩽hk-1,k+1(X).

Codimension bounds for the Noether–Lefschetz components for toric varieties / Bruzzo, U.; Montoya, W. D.. - In: EUROPEAN JOURNAL OF MATHEMATICS. - ISSN 2199-6768. - 8:3(2022), pp. 806-814. [10.1007/s40879-021-00461-0]

Codimension bounds for the Noether–Lefschetz components for toric varieties

Bruzzo, U.
Membro del Collaboration group
;
Montoya, W. D.
2022-01-01

Abstract

For a quasi-smooth hypersurface X in a projective simplicial toric variety PΣ, the morphism i∗: Hp(PΣ) → Hp(X) induced by the inclusion is injective for p= dim X and an isomorphism for p< dim X- 1. This allows one to define the Noether–Lefschetz locus NL β as the locus of quasi-smooth hypersurfaces of degree β such that i∗ acting on the middle algebraic cohomology is not an isomorphism. We prove that, under some assumptions, if dim PΣ= 2 k+ 1 and kβ- β= nη, n∈ N, where η is the class of a 0-regular ample divisor, and β is the anticanonical class, every irreducible component V of the Noether–Lefschetz locus quasi-smooth hypersurfaces of degree β satisfies the bounds n+1⩽codimZ⩽hk-1,k+1(X).
2022
8
3
806
814
10.1007/s40879-021-00461-0
https://arxiv.org/abs/2001.01960
Bruzzo, U.; Montoya, W. D.
File in questo prodotto:
File Dimensione Formato  
Bruzzo-Montoya2021_Article_CodimensionBoundsForTheNoether(1).pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 188.43 kB
Formato Adobe PDF
188.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/125833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact