The self-assembly of objects with a set of desired properties is a major goal of material science and physics. A particularly challenging problem is that of self-assembling structures with a target topology. Here we show by computer simulation that one may design the geometry of string-like rigid patchy templates to promote their efficient and reproducible self-assembly into a selected repertoire of non-planar closed folds including several knots. In particular, by controlling the template geometry, we can direct the assembly process so as to strongly favour the formation of constructs tied in trefoil or pentafoil, or even of more exotic torus knots. Polydisperse and racemic mixtures of helical fragments of variable composition add further tunability in the topological self-assembly we discovered. Our results should be relevant to the design of new ways to synthesize molecular knots, which may prove, for instance, to be efficient cargo-carriers due to their mechanical stability. © 2015 Macmillan Publishers Limited.

Self-assembling knots of controlled topology by designing the geometry of patchy templates

Polles, Guido;Micheletti, Cristian
2015-01-01

Abstract

The self-assembly of objects with a set of desired properties is a major goal of material science and physics. A particularly challenging problem is that of self-assembling structures with a target topology. Here we show by computer simulation that one may design the geometry of string-like rigid patchy templates to promote their efficient and reproducible self-assembly into a selected repertoire of non-planar closed folds including several knots. In particular, by controlling the template geometry, we can direct the assembly process so as to strongly favour the formation of constructs tied in trefoil or pentafoil, or even of more exotic torus knots. Polydisperse and racemic mixtures of helical fragments of variable composition add further tunability in the topological self-assembly we discovered. Our results should be relevant to the design of new ways to synthesize molecular knots, which may prove, for instance, to be efficient cargo-carriers due to their mechanical stability. © 2015 Macmillan Publishers Limited.
2015
6
Mar
1
8
6423
http://dx.doi.org/10.1038/ncomms7423
https://www.ncbi.nlm.nih.gov/pubmed/25752719
Polles, Guido; Marenduzzo, D.; Orlandini, E.; Micheletti, Cristian
File in questo prodotto:
File Dimensione Formato  
ncomms7423.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact