We propose a Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order Model (ROM) for an implementation of the Leray model that combines a two-step algorithm called Evolve-Filter (EF) with a computationally efficient finite volume method. The main novelty of the proposed approach relies in applying spatial filtering both for the collection of the snapshots and in the reduced order model, as well as in considering the pressure field at reduced level. In both steps of the EF algorithm, velocity and pressure fields are approximated by using different POD basis and coefficients. For the reconstruction of the pressures fields, we use a pressure Poisson equation approach. We test our ROM on two benchmark problems: 2D and 3D unsteady flow past a cylinder at Reynolds number 0≤Re≤100. The accuracy of the reduced order model is assessed against results obtained with the full order model. For the 2D case, a parametric study with respect to the filtering radius is also presented.

A POD-Galerkin reduced order model for a LES filtering approach / Girfoglio, M.; Quaini, A.; Rozza, G.. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 436:(2021). [10.1016/j.jcp.2021.110260]

A POD-Galerkin reduced order model for a LES filtering approach

Girfoglio, M.;Quaini, A.;Rozza, G.
2021-01-01

Abstract

We propose a Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order Model (ROM) for an implementation of the Leray model that combines a two-step algorithm called Evolve-Filter (EF) with a computationally efficient finite volume method. The main novelty of the proposed approach relies in applying spatial filtering both for the collection of the snapshots and in the reduced order model, as well as in considering the pressure field at reduced level. In both steps of the EF algorithm, velocity and pressure fields are approximated by using different POD basis and coefficients. For the reconstruction of the pressures fields, we use a pressure Poisson equation approach. We test our ROM on two benchmark problems: 2D and 3D unsteady flow past a cylinder at Reynolds number 0≤Re≤100. The accuracy of the reduced order model is assessed against results obtained with the full order model. For the 2D case, a parametric study with respect to the filtering radius is also presented.
2021
436
110260
https://arxiv.org/abs/2009.13593
Girfoglio, M.; Quaini, A.; Rozza, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/126069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact