We study the moduli space $I_{n,r}$ of rank-$2r$ symplectic instanton vector bundles on $mathbb{P}^3$ with $rge2$ and second Chern class $nge r+1, n-requiv 1(mathrm{mod}2)$. We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus $I^*_{n,r}$ of tame symplectic instantons is irreducible and has the expected dimension, equal to $4n(r+1)-r(2r+1)$. The proof is inherently based on a relation between the spaces $I^*_{n,r}$ and the moduli spaces of 't Hooft instantons.

Symplectic instanton bundles on P^3 and 't Hooft instantons / Bruzzo, Ugo; Markushevich, D.; Tikhomirov, A.. - In: EUROPEAN JOURNAL OF MATHEMATICS. - ISSN 2199-6768. - 2:1(2016), pp. 73-86. [10.1007/s40879-015-0082-0]

Symplectic instanton bundles on P^3 and 't Hooft instantons

Bruzzo, Ugo;
2016-01-01

Abstract

We study the moduli space $I_{n,r}$ of rank-$2r$ symplectic instanton vector bundles on $mathbb{P}^3$ with $rge2$ and second Chern class $nge r+1, n-requiv 1(mathrm{mod}2)$. We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus $I^*_{n,r}$ of tame symplectic instantons is irreducible and has the expected dimension, equal to $4n(r+1)-r(2r+1)$. The proof is inherently based on a relation between the spaces $I^*_{n,r}$ and the moduli spaces of 't Hooft instantons.
2016
2
1
73
86
https://arxiv.org/abs/1412.0638
http://cdsads.u-strasbg.fr/abs/2014arXiv1412.0638B
Bruzzo, Ugo; Markushevich, D.; Tikhomirov, A.
File in questo prodotto:
File Dimensione Formato  
2015 Bruzzo.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 464.3 kB
Formato Adobe PDF
464.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact