We study the moduli space $I_{n,r}$ of rank-$2r$ symplectic instanton vector bundles on $mathbb{P}^3$ with $rge2$ and second Chern class $nge r+1, n-requiv 1(mathrm{mod}2)$. We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus $I^*_{n,r}$ of tame symplectic instantons is irreducible and has the expected dimension, equal to $4n(r+1)-r(2r+1)$. The proof is inherently based on a relation between the spaces $I^*_{n,r}$ and the moduli spaces of 't Hooft instantons.
Symplectic instanton bundles on P^3 and 't Hooft instantons / Bruzzo, Ugo; Markushevich, D.; Tikhomirov, A.. - In: EUROPEAN JOURNAL OF MATHEMATICS. - ISSN 2199-6768. - 2:1(2016), pp. 73-86. [10.1007/s40879-015-0082-0]
Symplectic instanton bundles on P^3 and 't Hooft instantons
Bruzzo, Ugo;
2016-01-01
Abstract
We study the moduli space $I_{n,r}$ of rank-$2r$ symplectic instanton vector bundles on $mathbb{P}^3$ with $rge2$ and second Chern class $nge r+1, n-requiv 1(mathrm{mod}2)$. We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus $I^*_{n,r}$ of tame symplectic instantons is irreducible and has the expected dimension, equal to $4n(r+1)-r(2r+1)$. The proof is inherently based on a relation between the spaces $I^*_{n,r}$ and the moduli spaces of 't Hooft instantons.File | Dimensione | Formato | |
---|---|---|---|
2015 Bruzzo.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
464.3 kB
Formato
Adobe PDF
|
464.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.