We address the problem of general dissipative regularization of the quasilinear transport equation. We argue that the local behavior of solutions to the regularized equation near the point of gradient catastrophe for the transport equation is described by the logarithmic derivative of the Pearcey function, a statement generalizing the result of A.M.Il'in. We provide some analytic arguments supporting such conjecture and test it numerically.

On critical behavior in nonlinear evolutionary PDEs with small viscosity

Dubrovin, Boris;
2012-01-01

Abstract

We address the problem of general dissipative regularization of the quasilinear transport equation. We argue that the local behavior of solutions to the regularized equation near the point of gradient catastrophe for the transport equation is described by the logarithmic derivative of the Pearcey function, a statement generalizing the result of A.M.Il'in. We provide some analytic arguments supporting such conjecture and test it numerically.
2012
19
4
13
22
https://arxiv.org/abs/1301.7216
Dubrovin, Boris; Elaeva, M.
File in questo prodotto:
File Dimensione Formato  
dubrovin_elaeva.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 8.42 MB
Formato Adobe PDF
8.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact