We use Langevin dynamics simulations to model, at an atomistic resolution, how various natively knotted proteins are unfolded in repeated allosteric translocating cycles of the ClpY ATPase. We consider proteins representative of different topologies, from the simplest knot (trefoil 31), to the three-twist 52 knot, to the most complex stevedore, 61, knot. We harness the atomistic detail of the simulations to address aspects that have so far remained largely unexplored, such as sequence-dependent effects on the ruggedness of the landscape traversed during knot sliding. Our simulations reveal the combined effect on translocation of the knotted protein structure, i.e., backbone topology and geometry, and primary sequence, i.e., side chain size and interactions, and show that the latter can dominate translocation hindrance. In addition, we observe that due to the interplay between the knotted topology and intramolecular contacts the transmission of tension along the polypeptide chain occurs very differently from that of homopolymers. Finally, by considering native and non-native interactions, we examine how the disruption or formation of such contacts can affect the translocation processivity and concomitantly create multiple unfolding pathways with very different activation barriers.

Unfolding and Translocation of Knotted Proteins by Clp Biological Nanomachines: Synergistic Contribution of Primary Sequence and Topology Revealed by Molecular Dynamics Simulations / Fonseka, H. Y. Y.; Javidi, A.; Oliveira, L. F. L.; Micheletti, C.; Stan, G.. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - 125:27(2021), pp. 7335-7350. [10.1021/acs.jpcb.1c00898]

Unfolding and Translocation of Knotted Proteins by Clp Biological Nanomachines: Synergistic Contribution of Primary Sequence and Topology Revealed by Molecular Dynamics Simulations

Micheletti, C.
;
2021-01-01

Abstract

We use Langevin dynamics simulations to model, at an atomistic resolution, how various natively knotted proteins are unfolded in repeated allosteric translocating cycles of the ClpY ATPase. We consider proteins representative of different topologies, from the simplest knot (trefoil 31), to the three-twist 52 knot, to the most complex stevedore, 61, knot. We harness the atomistic detail of the simulations to address aspects that have so far remained largely unexplored, such as sequence-dependent effects on the ruggedness of the landscape traversed during knot sliding. Our simulations reveal the combined effect on translocation of the knotted protein structure, i.e., backbone topology and geometry, and primary sequence, i.e., side chain size and interactions, and show that the latter can dominate translocation hindrance. In addition, we observe that due to the interplay between the knotted topology and intramolecular contacts the transmission of tension along the polypeptide chain occurs very differently from that of homopolymers. Finally, by considering native and non-native interactions, we examine how the disruption or formation of such contacts can affect the translocation processivity and concomitantly create multiple unfolding pathways with very different activation barriers.
2021
125
27
7335
7350
https://doi.org/10.1021/acs.jpcb.1c00898
https://www.biorxiv.org/content/10.1101/2021.04.30.442167v1.abstract
Fonseka, H. Y. Y.; Javidi, A.; Oliveira, L. F. L.; Micheletti, C.; Stan, G.
File in questo prodotto:
File Dimensione Formato  
acs.jpcb.1c00898.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/126393
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact