The superconformal index of the N=4 SU(N) supersymmetric Yang-Mills theory counts the 1/16-BPS (Bogomol'nyi-Prasad-Sommerfield) states in this theory, and has been used via the AdS/CFT correspondence to count black hole microstates of 1/16-BPS black holes. On one hand, this index may be related to the Euclidean partition function of the theory on S3×S1 with complex chemical potentials, which maps by the AdS/CFT correspondence to a sum over Euclidean gravity solutions. On the other hand, the index may be expressed as a sum over solutions to Bethe Ansatz (BA) equations. We show that the solutions to the BA equations that are known to have a good large N limit, for the case of equal chemical potentials for the two angular momenta, have a one-to-one mapping to (complex) Euclidean black hole solutions on the gravity side. This mapping captures both the leading contribution from the classical gravity action (of order N2), as well as nonperturbative corrections in 1/N, which on the gravity side are related to wrapped D3-branes. Some of the BA solutions map to orbifolds of the standard Euclidean black hole solutions (which obey exactly the same boundary conditions as the other solutions). A priori there are many more gravitational solutions than Bethe Ansatz solutions, but we show that, by considering the nonperturbative effects, the extra solutions are ruled out, leading to a precise match between the solutions on both sides.

Gravity interpretation for the Bethe Ansatz expansion of the N=4 SYM index / Aharony, O.; Benini, F.; Mamroud, O.; Milan, P.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 104:8(2021), pp. 1-90. [10.1103/PhysRevD.104.086026]

Gravity interpretation for the Bethe Ansatz expansion of the N=4 SYM index

Benini, F.
;
Milan, P.
2021-01-01

Abstract

The superconformal index of the N=4 SU(N) supersymmetric Yang-Mills theory counts the 1/16-BPS (Bogomol'nyi-Prasad-Sommerfield) states in this theory, and has been used via the AdS/CFT correspondence to count black hole microstates of 1/16-BPS black holes. On one hand, this index may be related to the Euclidean partition function of the theory on S3×S1 with complex chemical potentials, which maps by the AdS/CFT correspondence to a sum over Euclidean gravity solutions. On the other hand, the index may be expressed as a sum over solutions to Bethe Ansatz (BA) equations. We show that the solutions to the BA equations that are known to have a good large N limit, for the case of equal chemical potentials for the two angular momenta, have a one-to-one mapping to (complex) Euclidean black hole solutions on the gravity side. This mapping captures both the leading contribution from the classical gravity action (of order N2), as well as nonperturbative corrections in 1/N, which on the gravity side are related to wrapped D3-branes. Some of the BA solutions map to orbifolds of the standard Euclidean black hole solutions (which obey exactly the same boundary conditions as the other solutions). A priori there are many more gravitational solutions than Bethe Ansatz solutions, but we show that, by considering the nonperturbative effects, the extra solutions are ruled out, leading to a precise match between the solutions on both sides.
2021
104
8
1
90
086026
10.1103/PhysRevD.104.086026
https://arxiv.org/abs/2104.13932
Aharony, O.; Benini, F.; Mamroud, O.; Milan, P.
File in questo prodotto:
File Dimensione Formato  
2104.13932.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 908.06 kB
Formato Adobe PDF
908.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/126609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact