We propose an efficient algorithm to numerically solve Anderson impurity problems using matrix product states. By introducing a modified chain mapping we obtain significantly lower entanglement, as compared to all previous attempts, while keeping the short-range nature of the couplings. Employing a thermofield transformation, our approach naturally extends to finite temperatures, with applications to dynamical mean field theory, nonequilibrium dynamics, and quantum transport.
Efficient mapping for Anderson impurity problems with matrix product states / Kohn, L.; Santoro, G. E.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 104:1(2021), pp. 1-6. [10.1103/PhysRevB.104.014303]
Efficient mapping for Anderson impurity problems with matrix product states
Kohn, L.;Santoro, G. E.
2021-01-01
Abstract
We propose an efficient algorithm to numerically solve Anderson impurity problems using matrix product states. By introducing a modified chain mapping we obtain significantly lower entanglement, as compared to all previous attempts, while keeping the short-range nature of the couplings. Employing a thermofield transformation, our approach naturally extends to finite temperatures, with applications to dynamical mean field theory, nonequilibrium dynamics, and quantum transport.File | Dimensione | Formato | |
---|---|---|---|
Kohn_PRB2021.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
936.67 kB
Formato
Adobe PDF
|
936.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.