We propose an efficient algorithm to numerically solve Anderson impurity problems using matrix product states. By introducing a modified chain mapping we obtain significantly lower entanglement, as compared to all previous attempts, while keeping the short-range nature of the couplings. Employing a thermofield transformation, our approach naturally extends to finite temperatures, with applications to dynamical mean field theory, nonequilibrium dynamics, and quantum transport.

Efficient mapping for Anderson impurity problems with matrix product states / Kohn, L.; Santoro, G. E.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 104:1(2021), pp. 1-6. [10.1103/PhysRevB.104.014303]

Efficient mapping for Anderson impurity problems with matrix product states

Kohn, L.;Santoro, G. E.
2021-01-01

Abstract

We propose an efficient algorithm to numerically solve Anderson impurity problems using matrix product states. By introducing a modified chain mapping we obtain significantly lower entanglement, as compared to all previous attempts, while keeping the short-range nature of the couplings. Employing a thermofield transformation, our approach naturally extends to finite temperatures, with applications to dynamical mean field theory, nonequilibrium dynamics, and quantum transport.
2021
104
1
1
6
https://arxiv.org/abs/2012.01424
Kohn, L.; Santoro, G. E.
File in questo prodotto:
File Dimensione Formato  
Kohn_PRB2021.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 936.67 kB
Formato Adobe PDF
936.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/126712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact