We prove a sharp isoperimetric inequality for the class of metric measure spaces verifying the synthetic Ricci curvature lower bounds Measure Contraction property (MCP(0, N)) and having Euclidean volume growth at infinity. We avoid the classical use of the Brunn-Minkowski inequality, not available for MCP(0, N), and of the PDE approach, not available in the singular setting. Our approach will be carried over by using a scaling limit of localization.
Isoperimetric inequality in noncompact MCP spaces / Cavalletti, Fabio; Manini, Davide. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6826. - 150:8(2022), pp. 1-12. [10.1090/proc/15945]
Isoperimetric inequality in noncompact MCP spaces
Cavalletti, Fabio
;Manini, Davide
2022-01-01
Abstract
We prove a sharp isoperimetric inequality for the class of metric measure spaces verifying the synthetic Ricci curvature lower bounds Measure Contraction property (MCP(0, N)) and having Euclidean volume growth at infinity. We avoid the classical use of the Brunn-Minkowski inequality, not available for MCP(0, N), and of the PDE approach, not available in the singular setting. Our approach will be carried over by using a scaling limit of localization.File | Dimensione | Formato | |
---|---|---|---|
2110.07528v2.pdf
non disponibili
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
201.78 kB
Formato
Adobe PDF
|
201.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
S0002-9939-2022-15945-0.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
239.81 kB
Formato
Adobe PDF
|
239.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.