We prove a $p$-adic version of the integral geometry formula for averaging the intersection of two $p$-adic projective varieties. We apply this result to give bounds on the number of points in the modulo $p^m$ reduction of a projective variety (reproving a result by Oesterlé) and to the study of random $p$-adic polynomial systems of equations.

$p$-Adic Integral Geometry / Kulkarni, Avinash; Lerario, Antonio. - In: SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY. - ISSN 2470-6566. - 5:1(2021), pp. 28-59. [10.1137/19M1284737]

$p$-Adic Integral Geometry

Kulkarni, Avinash;Lerario, Antonio
2021

Abstract

We prove a $p$-adic version of the integral geometry formula for averaging the intersection of two $p$-adic projective varieties. We apply this result to give bounds on the number of points in the modulo $p^m$ reduction of a projective variety (reproving a result by Oesterlé) and to the study of random $p$-adic polynomial systems of equations.
5
1
28
59
https://arxiv.org/abs/1908.04775
Kulkarni, Avinash; Lerario, Antonio
File in questo prodotto:
File Dimensione Formato  
1908.04775.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 339.16 kB
Formato Adobe PDF
339.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/126827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact