The folding mechanism of the Villin headpiece (HP36) is studied by means of a novel approach which entails an initial coarse-grained Monte Carlo (MC) scheme followed by all-atom molecular dynamics (MD) simulations in explicit solvent. The MC evolution occurs in a simplified free-energy landscape and allows an efficient selection of marginally-compact structures which are taken as viable initial conformations for the MD. The coarse-grained MC structural representation is connected to the one with atomic resolution through a ``fine--graining'' reconstruction algorithm. This two-stage strategy is used to select and follow the dynamics of seven different unrelated conformations of HP36. In a notable case the MD trajectory rapidly evolves towards the folded state, yielding a typical RMS deviation of the core region of only 2.4 A from the closest NMR model (the typical RMSD over the whole structure being 4.0A). The analysis of the various MC-MD trajectories provides valuable insight into the details of the folding and mis-folding mechanisms and particularly about the delicate influence of local and non-local interactions in steering the folding process.

Study of the Villin Headpiece folding dynamics by combining coarse-grained Monte Carlo evolution and all-atom Molecular Dynamics

Micheletti, Cristian
2005-01-01

Abstract

The folding mechanism of the Villin headpiece (HP36) is studied by means of a novel approach which entails an initial coarse-grained Monte Carlo (MC) scheme followed by all-atom molecular dynamics (MD) simulations in explicit solvent. The MC evolution occurs in a simplified free-energy landscape and allows an efficient selection of marginally-compact structures which are taken as viable initial conformations for the MD. The coarse-grained MC structural representation is connected to the one with atomic resolution through a ``fine--graining'' reconstruction algorithm. This two-stage strategy is used to select and follow the dynamics of seven different unrelated conformations of HP36. In a notable case the MD trajectory rapidly evolves towards the folded state, yielding a typical RMS deviation of the core region of only 2.4 A from the closest NMR model (the typical RMSD over the whole structure being 4.0A). The analysis of the various MC-MD trajectories provides valuable insight into the details of the folding and mis-folding mechanisms and particularly about the delicate influence of local and non-local interactions in steering the folding process.
2005
58
459
471
DE MORI, Gms; Colombo, G; Micheletti, Cristian
File in questo prodotto:
File Dimensione Formato  
villin_Proteins.pdf

non disponibili

Licenza: Non specificato
Dimensione 513.97 kB
Formato Adobe PDF
513.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 54
social impact