For equation , the second member in the PI hierarchy, we prove existence of various degenerate solutions depending on the complex parameter and evaluate the asymptotics in the complex plane for and . Using this result, we identify the most degenerate solutions , , , called tritronqu,e; describe the quasi-linear Stokes phenomenon; and find the large asymptotics of the coefficients in a formal expansion of these solutions. We supplement our findings by a numerical study of the tritronqu,e solutions.

On the Tritronquee Solutions of P-I(2)

Grava, Tamara;Kapaev, Andrei;
2015-01-01

Abstract

For equation , the second member in the PI hierarchy, we prove existence of various degenerate solutions depending on the complex parameter and evaluate the asymptotics in the complex plane for and . Using this result, we identify the most degenerate solutions , , , called tritronqu,e; describe the quasi-linear Stokes phenomenon; and find the large asymptotics of the coefficients in a formal expansion of these solutions. We supplement our findings by a numerical study of the tritronqu,e solutions.
2015
41
3
425
466
https://arxiv.org/abs/1306.6161
Grava, Tamara; Kapaev, Andrei; Klein, C.
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2Fs00365-015-9285-3.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact