We derive exact relations between the Renyi entanglement entropies and the particle number fluctuations of spatial connected regions in systems of N noninteracting fermions in arbitrary dimension. We prove that the asymptotic large-N behavior of the entanglement entropies is proportional to the variance of the particle number. We also consider 1D Fermi gases with a localized impurity, where all particle cumulants contribute to the asymptotic large-N behavior of the entanglement entropies. The particle cumulant expansion turns out to be convergent for all integer-order Renyi entropies (except for the von Neumann entropy) and the first few cumulants provide already a good approximation. Since the particle cumulants are accessible to experiments, these relations may provide a measure of entanglement in these systems.
Exact relations between particle fluctuations and entanglement in Fermi gases
Calabrese, Pasquale;
2012-01-01
Abstract
We derive exact relations between the Renyi entanglement entropies and the particle number fluctuations of spatial connected regions in systems of N noninteracting fermions in arbitrary dimension. We prove that the asymptotic large-N behavior of the entanglement entropies is proportional to the variance of the particle number. We also consider 1D Fermi gases with a localized impurity, where all particle cumulants contribute to the asymptotic large-N behavior of the entanglement entropies. The particle cumulant expansion turns out to be convergent for all integer-order Renyi entropies (except for the von Neumann entropy) and the first few cumulants provide already a good approximation. Since the particle cumulants are accessible to experiments, these relations may provide a measure of entanglement in these systems.File | Dimensione | Formato | |
---|---|---|---|
Calabrese_2012_EPL_98_20003.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
194.57 kB
Formato
Adobe PDF
|
194.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.