The intent of this short note is to extend real valued Lipschitz functions on metric spaces, while locally preserving the asymptotic Lipschitz constant. We then apply this results to give a simple and direct proof of the fact that Sobolev spaces on metric measure spaces defined with a relaxation approach à la Cheeger are invariant under isomorphism class of mm-structures.

Global Lipschitz extension preserving local constants / Di Marino, Simone; Gigli, Nicola; Pratelli, Aldo. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 31:4(2020), pp. 757-765. [10.4171/RLM/913]

Global Lipschitz extension preserving local constants

Di Marino Simone;Gigli Nicola
;
2020

Abstract

The intent of this short note is to extend real valued Lipschitz functions on metric spaces, while locally preserving the asymptotic Lipschitz constant. We then apply this results to give a simple and direct proof of the fact that Sobolev spaces on metric measure spaces defined with a relaxation approach à la Cheeger are invariant under isomorphism class of mm-structures.
31
4
757
765
https://arxiv.org/abs/2007.10011
Di Marino, Simone; Gigli, Nicola; Pratelli, Aldo
File in questo prodotto:
File Dimensione Formato  
Lip_ext.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 361.55 kB
Formato Adobe PDF
361.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/128610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact