The intent of this short note is to extend real valued Lipschitz functions on metric spaces, while locally preserving the asymptotic Lipschitz constant. We then apply this results to give a simple and direct proof of the fact that Sobolev spaces on metric measure spaces defined with a relaxation approach à la Cheeger are invariant under isomorphism class of mm-structures.
Global Lipschitz extension preserving local constants / Di Marino, Simone; Gigli, Nicola; Pratelli, Aldo. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 31:4(2020), pp. 757-765. [10.4171/RLM/913]
Global Lipschitz extension preserving local constants
Di Marino Simone;Gigli Nicola
;
2020-01-01
Abstract
The intent of this short note is to extend real valued Lipschitz functions on metric spaces, while locally preserving the asymptotic Lipschitz constant. We then apply this results to give a simple and direct proof of the fact that Sobolev spaces on metric measure spaces defined with a relaxation approach à la Cheeger are invariant under isomorphism class of mm-structures.File | Dimensione | Formato | |
---|---|---|---|
Lip_ext.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
361.55 kB
Formato
Adobe PDF
|
361.55 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.