In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.

On Jacobi fields and a canonical connection in sub-Riemannian geometry / Barilari, D.; Rizzi, L.. - In: ARCHIVUM MATHEMATICUM. - ISSN 0044-8753. - 53:(2017), pp. 77-92. [10.5817/AM2017-2-77]

On Jacobi fields and a canonical connection in sub-Riemannian geometry

Rizzi, L.
2017

Abstract

In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
53
77
92
http://arxiv.org/abs/1506.01827v3
Barilari, D.; Rizzi, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/128682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 12
social impact