A virtual element method for the quasilinear equation −div(κ(u)gradu)=f using general polygonal and polyhedral meshes is presented and analysed. The nonlinear coefficient is evaluated with the piecewise polynomial projection of the virtual element ansatz. Well posedness of the discrete problem and optimal-order a priori error estimates in the H1- and L2-norm are proven. In addition, the convergence of fixed-point iterations for the resulting nonlinear system is established. Numerical tests confirm the optimal convergence properties of the method on general meshes.
Virtual element method for quasilinear elliptic problems / Cangiani, A.; Chatzipantelidis, P.; Diwan, G.; Georgoulis, E. H.. - In: IMA JOURNAL OF NUMERICAL ANALYSIS. - ISSN 0272-4979. - 40:4(2020), pp. 2450-2472. [10.1093/IMANUM/DRZ035]
Virtual element method for quasilinear elliptic problems
Cangiani A.
;
2020-01-01
Abstract
A virtual element method for the quasilinear equation −div(κ(u)gradu)=f using general polygonal and polyhedral meshes is presented and analysed. The nonlinear coefficient is evaluated with the piecewise polynomial projection of the virtual element ansatz. Well posedness of the discrete problem and optimal-order a priori error estimates in the H1- and L2-norm are proven. In addition, the convergence of fixed-point iterations for the resulting nonlinear system is established. Numerical tests confirm the optimal convergence properties of the method on general meshes.File | Dimensione | Formato | |
---|---|---|---|
quasi-vem.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.