We prove that the extended Toda hierarchy of [1] admits a nonabelian Lie algebra of infinitesimal symmetries isomorphic to half of the Virasoro algebra. The generators L-m, mgreater than or equal to-1 of the Lie algebra act by linear differential operators onto the tau function of the hierarchy. We also prove that the tau function of a generic solution to the extended Toda hierarchy is annihilated by a combination of the Virasoro operators and the flows of the hierarchy. As an application we show that the validity of the Virasoro constraints for the CP1 Gromov-Witten invariants and their descendents implies that their generating function is the logarithm of a particular tau function of the extended Toda hierarchy.

Virasoro symmetries of the extended Toda hierarchy / Dubrovin, Boris; Y., Zhang. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 250:1(2004), pp. 161-193. [10.1007/s00220-004-1084-9]

Virasoro symmetries of the extended Toda hierarchy

Dubrovin, Boris;
2004-01-01

Abstract

We prove that the extended Toda hierarchy of [1] admits a nonabelian Lie algebra of infinitesimal symmetries isomorphic to half of the Virasoro algebra. The generators L-m, mgreater than or equal to-1 of the Lie algebra act by linear differential operators onto the tau function of the hierarchy. We also prove that the tau function of a generic solution to the extended Toda hierarchy is annihilated by a combination of the Virasoro operators and the flows of the hierarchy. As an application we show that the validity of the Virasoro constraints for the CP1 Gromov-Witten invariants and their descendents implies that their generating function is the logarithm of a particular tau function of the extended Toda hierarchy.
2004
250
1
161
193
https://arxiv.org/abs/math/0308152
Dubrovin, Boris; Y., Zhang
File in questo prodotto:
File Dimensione Formato  
2201084.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 234.44 kB
Formato Adobe PDF
234.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 66
social impact