A microcanonical first-order transition, connecting a clustered to a homogeneous phase, is studied from both the thermodynamic and the dynamical point of view for an N-body Hamiltonian system with infinite-range couplings. In the microcanonical ensemble, specific heat can be negative, but besides that, a microcanonical first-order transition displays a temperature discontinuity as the energy is varied continuously (a dual phenomenon to the latent heat in the canonical ensemble). In the transition region, the entropy per particle exhibits, as a function of the order parameter, two relative maxima separated by a minimum. The relaxation of the metastable state is shown to be ruled by an activation process induced by intrinsic finite N fluctuations. In particular, numerical evidences are given that the escape time diverges exponentially with N, with a growth rate given by the entropy barrier.

First-order microcanonical transitions in finite mean-field models / Antoni, M.; Ruffo, S.; Torcini, A.. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - 66:(2004), pp. 645-651. [10.1209/epl/i2004-10028-6]

First-order microcanonical transitions in finite mean-field models

Ruffo, S.;
2004-01-01

Abstract

A microcanonical first-order transition, connecting a clustered to a homogeneous phase, is studied from both the thermodynamic and the dynamical point of view for an N-body Hamiltonian system with infinite-range couplings. In the microcanonical ensemble, specific heat can be negative, but besides that, a microcanonical first-order transition displays a temperature discontinuity as the energy is varied continuously (a dual phenomenon to the latent heat in the canonical ensemble). In the transition region, the entropy per particle exhibits, as a function of the order parameter, two relative maxima separated by a minimum. The relaxation of the metastable state is shown to be ruled by an activation process induced by intrinsic finite N fluctuations. In particular, numerical evidences are given that the escape time diverges exponentially with N, with a growth rate given by the entropy barrier.
2004
66
645
651
http://www.iop.org/EJ/abstract/-search=61989369.6/0295-5075/66/5/645
Antoni, M.; Ruffo, S.; Torcini, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 31
social impact