Aims: The main goal of this paper is to derive observational constraints on the halo mass fuction (HMF) by performing a tomographic analysis of the magnification bias signal on a sample of background submillimeter galaxies. The results can then be compared with those from a non-tomographic study. Methods: We measure the cross-correlation function between a sample of foreground GAMA galaxies with spectroscopic redshifts in the range 0.1 < z < 0.8 (and divided up into four bins) and a sample of background submillimeter galaxies from H-ATLAS with photometric redshifts in the range 1.2 < z < 4.0. We model the weak lensing signal within the halo model formalism and carry out a Markov chain Monte Carlo algorithm to obtain the posterior distribution of all HMF parameters, which we assume to follow the Sheth and Tormen (ST) three-parameter and two-parameter fits. Results: While the observational constraints on the HMF from the non-tomographic analysis are not stringent, there is a remarkable improvement in terms of uncertainty reduction when tomography is adopted. Moreover, with respect to the traditional ST triple of values from numerical simulations, the results from the three-parameter fit predict a higher number density of halos at masses below ∼1012 M⊙ h−1 at 95% credibility. The two-parameter fit yields even more restricting results, with a larger number density of halos below ∼1013 M⊙ h−1 and a lower one above ∼1014 M⊙ h−1, this time at more than 3σ credibility. Our results are therefore in disagreement with the standard N-body values for the ST fit at 2σ and 3σ, respectively.
Tomography-based observational measurements of the halo mass function via the submillimeter magnification bias / Cueli, M. M.; Bonavera, L.; Gonzalez-Nuevo, J.; Crespo, D.; Casas, J. M.; Lapi, A.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 662:(2022), pp. 1-18. [10.1051/0004-6361/202142949]
Tomography-based observational measurements of the halo mass function via the submillimeter magnification bias
A. Lapi
2022-01-01
Abstract
Aims: The main goal of this paper is to derive observational constraints on the halo mass fuction (HMF) by performing a tomographic analysis of the magnification bias signal on a sample of background submillimeter galaxies. The results can then be compared with those from a non-tomographic study. Methods: We measure the cross-correlation function between a sample of foreground GAMA galaxies with spectroscopic redshifts in the range 0.1 < z < 0.8 (and divided up into four bins) and a sample of background submillimeter galaxies from H-ATLAS with photometric redshifts in the range 1.2 < z < 4.0. We model the weak lensing signal within the halo model formalism and carry out a Markov chain Monte Carlo algorithm to obtain the posterior distribution of all HMF parameters, which we assume to follow the Sheth and Tormen (ST) three-parameter and two-parameter fits. Results: While the observational constraints on the HMF from the non-tomographic analysis are not stringent, there is a remarkable improvement in terms of uncertainty reduction when tomography is adopted. Moreover, with respect to the traditional ST triple of values from numerical simulations, the results from the three-parameter fit predict a higher number density of halos at masses below ∼1012 M⊙ h−1 at 95% credibility. The two-parameter fit yields even more restricting results, with a larger number density of halos below ∼1013 M⊙ h−1 and a lower one above ∼1014 M⊙ h−1, this time at more than 3σ credibility. Our results are therefore in disagreement with the standard N-body values for the ST fit at 2σ and 3σ, respectively.File | Dimensione | Formato | |
---|---|---|---|
Cueli22.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
4.43 MB
Formato
Adobe PDF
|
4.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.