We consider functionals of the form \begin{equation*} \mathcal{F}(u) = \int_{\Omega} f(x, u(x), D u(x))\,dx, \quad u\in u_0 + W_0^{1,r}(\Omega,\mathbb{R}^m), \end{equation*} \noindent where the integrand $f:\Omega\times \mathbb{R}^m\times \mathbb{M}^{m\times n} \to \mathbb{R}$ is assumed to be non-quasiconvex in the last variable and $u_0$ is an arbitrary boundary value. We study the minimum problem by the introduction of the lower quasiconvex envelope $\overline{f}$ of $f$ and of the relaxed functional \begin{equation*} \overline{\mathcal{F}}(u) = \int_{\Omega} \overline{f}(x, u(x), D u(x))\,dx, \quad u\in u_0 + W_0^{1,r}(\Omega,\mathbb{R}^m), \end{equation*} imposing standard differentiability and growth properties on $\overline{f}$. Then we assume a suitable structural condition on $\overline{f}$ and a special regularity on the minimizers of $\overline{\mathcal{F}}(u)$, showing that $\mathcal{F}(u)$ attains its infimum. In addition we treat a class of functionals with separate dependence on the gradients of competing maps by the use of integro-extremality method.

On the minimum problem for non-quasiconvex vectorial functionals / Zagatti, S.. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 29:(In corso di stampa), pp. 1-21. [10.1007/s00030-022-00808-w]

On the minimum problem for non-quasiconvex vectorial functionals

Zagatti S.
In corso di stampa

Abstract

We consider functionals of the form \begin{equation*} \mathcal{F}(u) = \int_{\Omega} f(x, u(x), D u(x))\,dx, \quad u\in u_0 + W_0^{1,r}(\Omega,\mathbb{R}^m), \end{equation*} \noindent where the integrand $f:\Omega\times \mathbb{R}^m\times \mathbb{M}^{m\times n} \to \mathbb{R}$ is assumed to be non-quasiconvex in the last variable and $u_0$ is an arbitrary boundary value. We study the minimum problem by the introduction of the lower quasiconvex envelope $\overline{f}$ of $f$ and of the relaxed functional \begin{equation*} \overline{\mathcal{F}}(u) = \int_{\Omega} \overline{f}(x, u(x), D u(x))\,dx, \quad u\in u_0 + W_0^{1,r}(\Omega,\mathbb{R}^m), \end{equation*} imposing standard differentiability and growth properties on $\overline{f}$. Then we assume a suitable structural condition on $\overline{f}$ and a special regularity on the minimizers of $\overline{\mathcal{F}}(u)$, showing that $\mathcal{F}(u)$ attains its infimum. In addition we treat a class of functionals with separate dependence on the gradients of competing maps by the use of integro-extremality method.
29
1
21
74
https://doi.org/10.1007/s00030-022-00808-w
Zagatti, S.
File in questo prodotto:
File Dimensione Formato  
s00030-022-00808-w.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 448.9 kB
Formato Adobe PDF
448.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/129510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact