We analyze the thermalization properties and the validity of the Eigenstate Thermalization Hypothesis in a generic class of quantum Hamiltonians where the quench parameter explicitly breaks a Z2 symmetry. Natural realizations of such systems are given by random matrices expressed in a block form where the terms responsible for the quench dynamics are the off- diagonal blocks. Our analysis examines both dense and sparse random matrix realizations of the Hamiltonians and the observables. Sparse random matrices may be associated with local quantum Hamiltonians and they show a different spread of the observables on the energy eigenstates with respect to the dense ones. In particular, the numerical data seems to support the existence of rare states, i.e. states where the observables take expectation values which are different compared to the typical ones sampled by the micro-canonical distribution. In the case of sparse random matrices we also extract the finite size behavior of two different time scales associated with the thermalization process.

Quench Dynamics in Randomly Generated Extended Quantum Models

Brandino, Giuseppe Piero;De Luca, Andrea;Konik, Robert Michael;Mussardo, Giuseppe
2012-01-01

Abstract

We analyze the thermalization properties and the validity of the Eigenstate Thermalization Hypothesis in a generic class of quantum Hamiltonians where the quench parameter explicitly breaks a Z2 symmetry. Natural realizations of such systems are given by random matrices expressed in a block form where the terms responsible for the quench dynamics are the off- diagonal blocks. Our analysis examines both dense and sparse random matrix realizations of the Hamiltonians and the observables. Sparse random matrices may be associated with local quantum Hamiltonians and they show a different spread of the observables on the energy eigenstates with respect to the dense ones. In particular, the numerical data seems to support the existence of rare states, i.e. states where the observables take expectation values which are different compared to the typical ones sampled by the micro-canonical distribution. In the case of sparse random matrices we also extract the finite size behavior of two different time scales associated with the thermalization process.
2012
85
21
1
14
214435
http://link.aps.org/doi/10.1103/PhysRevB.85.214435
https://arxiv.org/abs/1111.6119
Brandino, Giuseppe Piero; De Luca, Andrea; Konik, Robert Michael; Mussardo, Giuseppe
File in questo prodotto:
File Dimensione Formato  
PhysRevB.85.214435.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 72
social impact