Active materials have emerged as valuable candidates for shape morphing applications, where a body reconfiguration is achieved upon triggering its active response. Given a desired shape change, a natural question is to compare different morphing mechanisms to select the most effective one with respect to an optimality criterion. We introduce an optimal control problem to determine the active strains suitable to attain a target equilibrium shape while minimizing the complexity of the activation. Specifically, we discuss the planar morphing of active, hyperelastic bodies in the absence of external forces and exploit the notion of target metric to encompass a broad set of active materials in a unifying approach. For the case of affine shape changes, we derive explicit conditions on the body reference configuration for the optimality of homogeneous target metrics. More complex shape changes are analysed via numerical simulations to explore the impact on optimal solutions of different objective functionals inspired by features of existing materials. We show how stresses arising from incompatibilities contribute to reduce the complexity of the controls. We believe that our approach may be exploited for the optimal design of active systems and may contribute to gather insight into the morphing strategies of biological systems.
Optimal design of planar shapes with active materials / Andrini, Dario; Noselli, Giovanni; Lucantonio, Alessandro. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A. - ISSN 1364-5021. - 478:2266(2022), pp. 1-16. [10.1098/rspa.2022.0256]
Optimal design of planar shapes with active materials
Andrini, Dario;Noselli, Giovanni
;Lucantonio, Alessandro
2022-01-01
Abstract
Active materials have emerged as valuable candidates for shape morphing applications, where a body reconfiguration is achieved upon triggering its active response. Given a desired shape change, a natural question is to compare different morphing mechanisms to select the most effective one with respect to an optimality criterion. We introduce an optimal control problem to determine the active strains suitable to attain a target equilibrium shape while minimizing the complexity of the activation. Specifically, we discuss the planar morphing of active, hyperelastic bodies in the absence of external forces and exploit the notion of target metric to encompass a broad set of active materials in a unifying approach. For the case of affine shape changes, we derive explicit conditions on the body reference configuration for the optimality of homogeneous target metrics. More complex shape changes are analysed via numerical simulations to explore the impact on optimal solutions of different objective functionals inspired by features of existing materials. We show how stresses arising from incompatibilities contribute to reduce the complexity of the controls. We believe that our approach may be exploited for the optimal design of active systems and may contribute to gather insight into the morphing strategies of biological systems.File | Dimensione | Formato | |
---|---|---|---|
andrini-et-al-2022-optimal-design-of-planar.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.