In the paper we prove two inequalities in the setting of RCD(K, infinity) spaces using similar techniques. The first one is an indeterminacy estimate involving the p-Wasserstein distance between the positive part and the negative part of an L-infinity function and the measure of the interface between the positive part and the negative part. The second one is a conjectured lower bound on the p-Wasserstein distance between the positive and negative parts of a Laplace eigenfunction.

Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances / De Ponti, N; Farinelli, S. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - 61:4(2022), pp. 1-17. [10.1007/s00526-022-02240-5]

Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances

De Ponti, N
;
Farinelli, S
2022-01-01

Abstract

In the paper we prove two inequalities in the setting of RCD(K, infinity) spaces using similar techniques. The first one is an indeterminacy estimate involving the p-Wasserstein distance between the positive part and the negative part of an L-infinity function and the measure of the interface between the positive part and the negative part. The second one is a conjectured lower bound on the p-Wasserstein distance between the positive and negative parts of a Laplace eigenfunction.
2022
61
4
1
17
131
https://arxiv.org/abs/2104.12097
De Ponti, N; Farinelli, S
File in questo prodotto:
File Dimensione Formato  
indeter.eigen_inf 12 Mar 22 black.pdf

non disponibili

Descrizione: postprint
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 421.56 kB
Formato Adobe PDF
421.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/130050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact