For a proper scheme X with a fixed 1-perfect obstruction theory, we define virtual versions of holomorphic Euler characteristic, chi y-genus, and elliptic genus; they are deformation invariant, and extend the usual definition in the smooth case. We prove virtual versions of the Grothendieck-Riemann-Roch and Hirzebruch-Riemann-Roch theorems. We show that the virtual chi y-genus is a polynomial, and use this to define a virtual topological Euler characteristic. We prove that the virtual elliptic genus satisfies a Jacobi modularity property; we state and prove a localization theorem in the toric equivariant case. We show how some of our results apply to moduli spaces of stable sheaves.

Riemann-Roch theorems and elliptic genus for virtually smooth schemes / Fantechi, B; Gottsche, L. - In: GEOMETRY & TOPOLOGY. - ISSN 1364-0380. - 14:(2010), pp. 83-115. [10.2140/gt.2010.14.83]

Riemann-Roch theorems and elliptic genus for virtually smooth schemes

Fantechi, B;
2010-01-01

Abstract

For a proper scheme X with a fixed 1-perfect obstruction theory, we define virtual versions of holomorphic Euler characteristic, chi y-genus, and elliptic genus; they are deformation invariant, and extend the usual definition in the smooth case. We prove virtual versions of the Grothendieck-Riemann-Roch and Hirzebruch-Riemann-Roch theorems. We show that the virtual chi y-genus is a polynomial, and use this to define a virtual topological Euler characteristic. We prove that the virtual elliptic genus satisfies a Jacobi modularity property; we state and prove a localization theorem in the toric equivariant case. We show how some of our results apply to moduli spaces of stable sheaves.
2010
14
83
115
Fantechi, B; Gottsche, L
File in questo prodotto:
File Dimensione Formato  
0706.0988v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 506.83 kB
Formato Adobe PDF
506.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/13032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 47
social impact