We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase. An initial state made by a local excitation of the paramagnetic ground state is considered. We provide analytical predictions for its time evolution, solving the single-particle dynamics on a hierarchical network. A localization mechanism is found, and the excitation remains close to its initial position at arbitrary times. Furthermore, a universal scaling among space and time is found that is related to the algebraic decay of the interactions as r-1-σ. We compare our predictions to numerics, employing tensor network techniques, for large magnetic fields, discussing the robustness of the mechanism in the full many-body dynamics.
Spreading of a local excitation in a quantum hierarchical model / Capizzi, L.; Giachetti, G.; Santini, A.; Collura, M.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 106:13(2022), pp. 1-10. [10.1103/PhysRevB.106.134210]
Spreading of a local excitation in a quantum hierarchical model
Capizzi L.;Giachetti G.;Santini A.;Collura M.
2022-01-01
Abstract
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase. An initial state made by a local excitation of the paramagnetic ground state is considered. We provide analytical predictions for its time evolution, solving the single-particle dynamics on a hierarchical network. A localization mechanism is found, and the excitation remains close to its initial position at arbitrary times. Furthermore, a universal scaling among space and time is found that is related to the algebraic decay of the interactions as r-1-σ. We compare our predictions to numerics, employing tensor network techniques, for large magnetic fields, discussing the robustness of the mechanism in the full many-body dynamics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.