A variational model proposed in the physics literature to describe the onset of pattern formation in two-component bilayer membranes and amphiphilic monolayers leads to the analysis of a Ginzburg-Landau type energy, precisely, \[ u\mapsto\int_{\Omega}\bigg[W\left( u\right) -q\left\vert \nabla u\right\vert ^{2}+\left\vert \nabla^{2}u\right\vert ^{2}\bigg]\,dx. \] When the stiffness coefficient $-q$ is negative, one expects curvature instabilities of the membrane and, in turn, these instabilities generate a pattern of domains that differ both in composition and in local curvature. Scaling arguments motivate the study of the family of singular perturbed energies \[ u\mapsto F_{\varepsilon}(u,\Omega):=\int_{\Omega}\,\left[ \frac {1}{\varepsilon}W(u)-q\varepsilon|\nabla u|^{2}+\varepsilon^{3}|\nabla ^{2}u|^{2}\right] \,\,dx. \] Here, the asymptotic behavior of $\{F_{\varepsilon}\}$ is studied using $\Gamma$-convergence techniques. In particular, compactness results and an integral representation of the limit energy are obtained.
Singular perturbation models in phase transitions for second order materials / Chermisi, M; Dal Maso, Gianni; Fonseca, I; Leoni, G.. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 60:2(2011), pp. 367-409. [10.1512/iumj.2011.60.4346]
Singular perturbation models in phase transitions for second order materials
Dal Maso, Gianni;
2011-01-01
Abstract
A variational model proposed in the physics literature to describe the onset of pattern formation in two-component bilayer membranes and amphiphilic monolayers leads to the analysis of a Ginzburg-Landau type energy, precisely, \[ u\mapsto\int_{\Omega}\bigg[W\left( u\right) -q\left\vert \nabla u\right\vert ^{2}+\left\vert \nabla^{2}u\right\vert ^{2}\bigg]\,dx. \] When the stiffness coefficient $-q$ is negative, one expects curvature instabilities of the membrane and, in turn, these instabilities generate a pattern of domains that differ both in composition and in local curvature. Scaling arguments motivate the study of the family of singular perturbed energies \[ u\mapsto F_{\varepsilon}(u,\Omega):=\int_{\Omega}\,\left[ \frac {1}{\varepsilon}W(u)-q\varepsilon|\nabla u|^{2}+\varepsilon^{3}|\nabla ^{2}u|^{2}\right] \,\,dx. \] Here, the asymptotic behavior of $\{F_{\varepsilon}\}$ is studied using $\Gamma$-convergence techniques. In particular, compactness results and an integral representation of the limit energy are obtained.File | Dimensione | Formato | |
---|---|---|---|
Che-DM-Fon-Leo-IUMJ2011.pdf
non disponibili
Licenza:
Non specificato
Dimensione
429.16 kB
Formato
Adobe PDF
|
429.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.