Background: Modeling the whole cardiac function involves the solution of several complex multi-physics and multi-scale models that are highly computationally demanding, which call for simpler yet accurate, high-performance computational tools. Despite the efforts made by several research groups, no software for whole-heart fully coupled cardiac simulations in the scientific community has reached full maturity yet.Results: In this work we present life(x)-fiber, an innovative tool for the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, which are the essential building blocks for modeling the electrophysiological, mechanical and electromechanical cardiac function, from single-chamber to whole-heart simulations. life(x)-fiber is the first publicly released module for cardiac simulations based on life(x), an open-source, high-performance Finite Element solver for multi-physics, multi-scale and multi-domain problems developed in the framework of the iHEART project, which aims at making in silico experiments easily reproducible and accessible to a wide community of users, including those with a background in medicine or bio-engineering.Conclusions: The tool presented in this document is intended to provide the scientific community with a computational tool that incorporates general state of the art models and solvers for simulating the cardiac function within a high-performance framework that exposes a user-and developer-friendly interface. This report comes with an extensive technical and mathematical documentation to welcome new users to the core structure of life(x)-fiber and to provide them with a possible approach to include the generated cardiac fibers into more sophisticated computational pipelines. In the near future, more modules will be successively published either as pre-compiled binaries for x86-64 Linux systems or as open source software.
lifex-fiber: an open tool for myofibers generation in cardiac computational models / Africa, Pasquale Claudio; Piersanti, Roberto; Fedele, Marco; Dede', Luca; Quarteroni, Alfio. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 24:1(2023), pp. 1-32. [10.1186/s12859-023-05260-w]
lifex-fiber: an open tool for myofibers generation in cardiac computational models
Africa, Pasquale Claudio
;
2023-01-01
Abstract
Background: Modeling the whole cardiac function involves the solution of several complex multi-physics and multi-scale models that are highly computationally demanding, which call for simpler yet accurate, high-performance computational tools. Despite the efforts made by several research groups, no software for whole-heart fully coupled cardiac simulations in the scientific community has reached full maturity yet.Results: In this work we present life(x)-fiber, an innovative tool for the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, which are the essential building blocks for modeling the electrophysiological, mechanical and electromechanical cardiac function, from single-chamber to whole-heart simulations. life(x)-fiber is the first publicly released module for cardiac simulations based on life(x), an open-source, high-performance Finite Element solver for multi-physics, multi-scale and multi-domain problems developed in the framework of the iHEART project, which aims at making in silico experiments easily reproducible and accessible to a wide community of users, including those with a background in medicine or bio-engineering.Conclusions: The tool presented in this document is intended to provide the scientific community with a computational tool that incorporates general state of the art models and solvers for simulating the cardiac function within a high-performance framework that exposes a user-and developer-friendly interface. This report comes with an extensive technical and mathematical documentation to welcome new users to the core structure of life(x)-fiber and to provide them with a possible approach to include the generated cardiac fibers into more sophisticated computational pipelines. In the near future, more modules will be successively published either as pre-compiled binaries for x86-64 Linux systems or as open source software.File | Dimensione | Formato | |
---|---|---|---|
s12859-023-05260-w.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.06 MB
Formato
Adobe PDF
|
6.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.