We study the small dispersion limit for the Korteweg-de Vries (KdV) equation ut+6uux+ϵ2uxxx=0 in a critical scaling regime where x approaches the trailing edge of the region where the KdV solution shows oscillatory behavior. Using the Riemann-Hilbert approach, we obtain an asymptotic expansion for the KdV solution in a double scaling limit, which shows that the oscillations degenerate to sharp pulses near the trailing edge. Locally those pulses resemble soliton solutions of the KdV equation.
Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit / Claeys, T.; Grava, Tamara. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 42:5(2010), pp. 2132-2154. [10.1137/090779103]
Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit
Grava, Tamara
2010-01-01
Abstract
We study the small dispersion limit for the Korteweg-de Vries (KdV) equation ut+6uux+ϵ2uxxx=0 in a critical scaling regime where x approaches the trailing edge of the region where the KdV solution shows oscillatory behavior. Using the Riemann-Hilbert approach, we obtain an asymptotic expansion for the KdV solution in a double scaling limit, which shows that the oscillations degenerate to sharp pulses near the trailing edge. Locally those pulses resemble soliton solutions of the KdV equation.File | Dimensione | Formato | |
---|---|---|---|
Claeysgrava2010Solitonic.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
354.57 kB
Formato
Adobe PDF
|
354.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.