We construct semi-orthogonal decompositions on triangulated categories of parabolic sheaves on certain kinds of logarithmic schemes. This provides a categorification of the decomposition theorems in Kummer flat K-theory due to Hagihara and Niziol. Our techniques allow us to generalize Hagihara and Niziol’s results to a much larger class of invariants in addition to K-theory, and also to extend them to more general logarithmic stacks.
Parabolic Semi-Orthogonal Decompositions and Kummer Flat Invariants of Log Schemes / Scherotzke, S; Sibilla, N.; Talpo, M.. - In: DOCUMENTA MATHEMATICA. - ISSN 1431-0643. - 25:(2020), pp. 955-1009. [10.25537/dm.2020v25.955-1009]
Parabolic Semi-Orthogonal Decompositions and Kummer Flat Invariants of Log Schemes
Sibilla N.
;
2020-01-01
Abstract
We construct semi-orthogonal decompositions on triangulated categories of parabolic sheaves on certain kinds of logarithmic schemes. This provides a categorification of the decomposition theorems in Kummer flat K-theory due to Hagihara and Niziol. Our techniques allow us to generalize Hagihara and Niziol’s results to a much larger class of invariants in addition to K-theory, and also to extend them to more general logarithmic stacks.File | Dimensione | Formato | |
---|---|---|---|
documenta-final.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
553.86 kB
Formato
Adobe PDF
|
553.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.